We report the assessment of cerebral blood flow (CBF) changes with a wide-field laser Doppler imager based on a CCD camera detection scheme, in vivo, in mice. The setup enables the acquisition of data in minimally invasive conditions. In contrast with conventional laser Doppler velocimeters and imagers, the Doppler signature of moving scatterers is measured in the frequency domain, by detuning a heterodyne optical detection. The quadratic mean of the measured frequency shift is used as an indicator of CBF. We observe a significant variability of this indicator in an experiment designed to induce blood flow changes.