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Abstract: Few methods exist that can accurately handle dynamic light
scattering in the regime between single and highly multiple scattering. We
demonstrate dynamic light scattering Monte Carlo (DLS-MC), a numerical
method by which the electric field autocorrelation function may be calcu-
lated for arbitrary geometries if the optical properties and particle motion
are known or assumed. DLS-MC requires no assumptions regarding the
number of scattering events, the final form of the autocorrelation function,
or the degree of correlation between scattering events. Furthermore, the
method is capable of rapidly determining the effect of particle motion
changes on the autocorrelation function in heterogeneous samples. We
experimentally validated the method and demonstrated that the simulations
match both the expected form and the experimental results. We also
demonstrate the perturbation capabilities of the method by calculating the
autocorrelation function of flow in a representation of mouse microvascu-
lature and determining the sensitivity to flow changes as a function of depth.
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1. Introduction

Dynamic light scattering techniques have been used since the 1960s to characterize the mo-
tion of particles [1]. In the single scattering regime, several methods have been developed to
measure either flowing or diffusing particles [2–4]. Likewise, the theory behind particle motion
characterization in highly multiple scattering media, often called Diffusing Wave Spectroscopy
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(DWS), is also well developed [5–8]. However, in the intermediate scattering regime, where
a significant amount of light travels less than two or three reduced mean free paths, theoreti-
cal modeling becomes very difficult and sample dependent [9]. These models also require an
assumption about the form of the autocorrelation function, where the usual assumption is ei-
ther Gaussian or Lorenztian [10]. Furthermore, in wide field imaging methods such as Laser
Speckle Contrast Imaging (LSCI), the detected signal is a mixture of photons from all scatte-
ring regimes [11, 12]. Several experimental methods have been developed that are designed to
suppress multiple scattering [13–15]. While effective, these methods increase the complexity
of otherwise simple instrumentation.

Here we demonstrate dynamic light scattering Monte Carlo (DLS-MC), a numerical tech-
nique which leverages the increases in computational power to directly model dynamic light
scattering in an arbitrary three dimensional voxelized geometry. The advantage to this approach
is that it does not require assumptions about the degree of multiple scattering or the form of the
autocorrelation function. The method is similar to Monte Carlo based models designed to sim-
ulate laser Doppler flowmetry, but results in the field autocorrelation function rather than the
Doppler power spectra [16, 17]. Furthermore, this method is capable of rapidly evaluating the
effect of particle motion changes in the geometry.

2. Theory

2.1. Dynamic light scattering

The electric field autocorrelation function g1(t) is defined as

g1(t) = hE(0)E⇤(t)i (1)

which describes the effects of particle motion on the electric field. As mentioned before, the
laser Doppler and DWS literature is full of examples where the form of g1(t) is calculated by
making assumptions regarding the nature of the particles in motion [1, 3, 18]. These methods
begin by assuming the form of the incident E-field to be a plane wave:

Ei = E0(r)exp( jk · r) (2)

where E0(r) is the amplitude of the incident field at the point r and k is the wavevector.
When the incident field scatters from a moving particle at location r in the medium, the

resulting scattered electric field has the following form [6]:

Es(R, t) = A(r)E0(r)exp( jkf ·R)exp(� j(kf �ki) · r(t)) (3)

where A(r) is the amplitude loss from absorption during the scattering event, kf is the scattered
field wavevector, ki is the incident field wavevector, R is the scattering volume, and r(t) is the
location of the scattering particle within that scattering volume. For convenience, the scattering
vector q is defined as:

q = kf �ki, (4)

which has a magnitude of q = 2k0 sin(q/2), where k0 is the wavenumber and q is the angle
between the incident and scattered field wavevectors. From here, one can use the definition of
the field autocorrelation function g1(t) along with the definition of the scattered field to arrive
at:

g1(t) = hE(0)E⇤(t)i= hA(r)|E0(r)|2 exp( jq · [r(t)� r(0)])i (5)

where [r(t)� r(0)] describes the motion of the scattering particle [1].
Previous work has included the effects of multiple scattering by accumulating the phase

shift attributed to each scattering event along the photon path [6, 16]. Using the relationship
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q = 2k0 sin(q/2)q̂, where q̂ is the unit vector of q, the effective contribution to g1(t) from a
single photon path with N dynamic scattering events is:

E(0)E⇤(t) = A(r)|E0(r)|2 exp( j2k0t
N

Â
n
(sin(

qn

2
)q̂n ·Vn)). (6)

where Vn is the velocity of the particle at scattering event n. The unique aspects of any given
photon path length incident on the detector are the absorption weighting A and the cumulative
phase shifts in the sum corresponding to each dynamic scattering event along the photon path.
For convenience, the scalar value Y is defined as Ân (sin( qn

2 )q̂n ·Vn). The expectation of the
absorption weighted sum of Eq. (6) over all photon paths gives g1(t):

g1(t) = hE(0)E⇤(t)i=
Z •

�•
P(Y )exp( j2k0Yt)dY . (7)

This expression makes no assumption about the number of dynamic scattering events or
the degree of correlation between successive scattering events. The values Y and P(Y ) can be
calculated using the Monte Carlo model of light transport if the vector directions of particle
movement are known or assumed.

2.2. Dynamic Monte Carlo simulations

Monte Carlo simulations are often used for evaluating the transport of light through turbid
media. To solve Eq. (7), a three dimensional voxelized Monte Carlo model was used. Unlike
layered models used in early simulations of Doppler scattering, three dimensional models offer
the advantage of being applicable to a wider range of potential problems [19–22]. An example
of this increased flexibility is demonstrated later where the autocorrelation function is calcu-
lated for an imaging setup using a three dimensional representation of brain microvasculature.

The two primary inputs required to solve Eq. (7) are the photon path through the medium and
the vector direction of flow at each scattering event. Each voxel of the Monte Carlo geometry
is given optical properties that determine the distribution of photon scattering lengths, degree
of absorption, and the scattering angle phase function. The Henyey-Greenstein phase function
was used with corresponding anisotropy g. The illumination consists of a diverging cone of
light incident on the surface of the geometry. Detection occurs when a photon scatters through
the medium and is incident on a specified detection surface.

To evaluate light transport in complex media, many photons must be simulated to allow the
distribution of photon paths to converge. In some cases, depending on the size of the geometry,
illumination radius, and size of the region of interest (ROI), as many as 109 � 1010 photons
must be simulated. However, since each launched photon is statistically independent, many
simulations can be initialized simultaneously as long as the random number generators produce
statistically independent values. Parallelization of the code was performed using the message
passing interface (MPI) [23]. Using MPI, Monte Carlo simulations could be simultaneously
initialized on an arbitrary number of processor cores. The Scalable Parallel Pseudo Random
Number Generator (SPRNG) was used to ensure statistical independence among the parallel
simulation instances [24]. Here the model is parallelized using the MPI library and is run on
the Lonestar cluster at the Texas Advanced Computing Center (TACC). With this setup, up to
4000 independent simulation threads may be launched simultaneously, which easily provides
enough computing power to allow convergence.

While this work used the above Monte Carlo method to calculate photon propagation through
heterogeneous media, the DLS-MC method does not require this specific implementation. Any
implementation may be used, such as a GPU accelerated Monte Carlo or a meshed based Monte
Carlo, as long as it is modified to save the photon scattering coordinates to a database [25, 26].
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For each detected photon, the coordinates of each scattering location and the absorption-
adjusted weight of the photon is saved for post-processing. These values, along with the vector
direction of flow at each point, are sufficient to solve for g1(t) as shown in Eq. (7).

Typically, the Monte Carlo simulations are performed such that all photons exiting the detec-
tion surface are recorded. It is often appropriate to then specify a smaller region of interest on
the surface, and use only photons which exited the surface in that region with a given NA. For
each detected photon i, the dynamic contribution Yi,n of each scattering event along the photon’s
path may be calculated using the following expression:

Yi,n = (k̂ f ,n � k̂i,n) ·Vn (8)

where k̂ f ,n is the unit wavevector after scattering, k̂i,n is the unit vector before scattering, and Vn
is the vector direction of flow in the medium at the coordinates where scattering event n occurs.

The contribution of each photon path to g1(t) is determined by the absorption weighted value
of the detected photons along its path [27]. The absorption weighted value wi for each photon
path is:

wi = ’
j

exp(�µ j
a li j) (9)

where µ j
a is the absorption coefficient of material j and li j is the path length of photon i through

material j. M is the total number of detected photons used in the calculation of g1(t). The value
of P(Yi) is determined by dividing the absorption weighted value by the sum of all detected
photon’s weights:

P(Yi) =
wi

ÂM
i wi

(10)

Once the photon weight P(Yi) and the dynamic contribution from each scattering event Yin
have been calculated for each photon, they are stored to a database along with the number of
dynamic scattering events Ni and the coordinates of each scattering event for further processing.

2.3. Calculation of the autocorrelation function

Using the recorded photon weight and dynamic scattering event contributions, the autocorrela-
tion function is calculated by taking the expected value over all simulated photon paths:

g1(t) =
M

Â
i=1

P(Yi)exp( jk0t
N

Â
n=1

Yi,n). (11)

where M is the number of detected photons and N is the number of dynamic scattering events
of photon i. Note that the factor of 2 and the sin(q/2) terms are missing in comparison to Eq.
(7)because Y is defined differently. Both expressions are equally valid.

One of the advantages of the presented method is that g1(t) may be re-calculated using
different flow conditions while the photon paths remain the same. Since each value Yi,n is pro-
portional to the velocity at the scattering coordinates of event n of photon i (which are also
recorded), they may be re-scaled to reflect a new velocity and the autocorrelation function can
be re-calculated.

Perturbations are defined by specifying a volume and the magnitude of velocity change. Us-
ing the coordinate bounds of the perturbed volume, the individual dynamic scattering events
from all photons that occur inside the volume are scaled by the magnitude of the perturba-
tion. The sum of all dynamic scattering events Yi.n from each photon is re-calculated, and the
ensemble average of all photons is re-calculated according to Eq. (11).
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Fig. 1. Autocorrelation measurement setup for PDMS phantom experiments.

Using this perturbation method allows for the determination of differential autocorrelation
time changes that depend only on the change in the flow conditions. The noise associated with
the photon path information is shared among all calculations. Because all the required infor-
mation can be stored in memory or a database, the re-calculation of g1(t) can be performed
quickly. This removes the need to perform many separate, independent simulations when using
the same geometry. As with other perturbation Monte Carlo methods [27], this could potentially
be used to solve inverse problems in dynamic media.

3. Experimental validation

To evaluate the ability of the model to accurately predict both the form and the effect of per-
turbations on g1(t), an experimental validation was performed using phantoms under linear
motion. We measured the intensity autocorrelation function, g2(t), and calculated the field au-
tocorrelation function through the Siegert relation:

g2(t) = B(1+b |g1(t)|2) (12)

where b is an experimental instrumentation factor and B is an offset.
Experimental measurements of g2(t) were performed using a poly-dimethyl-siloxane

(PDMS) phantom. The PDMS was mixed with 1.8 mg/g titanium dioxide (TiO2). As shown
in Fig. 1, an actuated microscope stage was used to move the phantom at a fixed rate of 0.1 -
1.0 mm/s. The surface of the phantom was illuminated using a 660nm laser diode. The scat-
tered light was collected by a single mode fiber connected to a photomultiplier tube (Ham-
mamatsu) and measured using a photon correlator board (DPC 130, Becker and Hickl). The
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intensity autocorrelation function was calculated from the experimental data for a time range of
10�7 �10�1s. Approximately 107 �108 photons were collected over the course of 30 seconds
during each experiment to ensure that noise at the longer times was low enough to not obscure
the form of the autocorrelation function.

DLS-MC simulations were performed using a voxelized geometry representation of the
phantom. The optical properties of the PDMS phantom at 660nm were: µs = 8mm�1, µa =
0.001mm�1, and g = 0.9. The Zemax optical ray tracing software package was used to deter-
mine the correct detector NA for use in the simulations, which was approximately 0.03. The
corresponding velocities were uniform and matched to the experimental stage values (0.1 - 1.0
mm/s). Since the perturbation method described above was used to change the velocity and
re-calculate the autocorrelation function, only one Monte Carlo simulation was required.

4. Cortical blood flow simulations

To demonstrate the flexibility and perturbation capabilities of DLS-MC in heterogeneous me-
dia, the autocorrelation function corresponding to cortical blood flow in a mouse was calculated.
The velocities in each layer of the geometry were then perturbed and the change in the auto-
correlation time constant tc of g1(t) was determined. The autocorrelation time constant tc is
defined as in an exponential distribution: the time at which the normalized g1(t) curve reaches
a value of 1

e .
The vascular geometry was obtained from two photon fluorescence stacks of mouse cor-

tical vasculature. Four overlapping 600 µm⇥ 600 µm image stacks were taken in 2 µm axial
steps down to 500 µm. The image stacks were stitched together using the method developed
by Preibisch et. al. to create one large 1024 µm⇥ 1024 µm⇥ 500 µm image stack [22, 28].
The stack was then extended down to 900 µm in depth by matching vascular volume fractions
to 3-6% as reported in McCaslin et al. by replicating the capillary bed layers already present
between 250-450 µm in the image stack [29]. The stacks were then vectorized using the semi-
automated VIDA Suite followed by manual correction to determine the direction of the vessel
centerlines [30]. The sign of the flow vector (+/- relative to segmented centerline direction) for
each vessel strand was chosen randomly, and a fixed speed of 1 mm/s was used for capillaries
and 5 mm/s for non-capillaries. Optical properties were assigned separately to vessels with a
diameter smaller than 11 µm (capillaries) and larger than 11 µm based on an assumed capillary
hematocrit (Hct) of 15% and a non-capillary Hct of 45%.

Table 1. Optical properties for microvasculature geometry
µa (mm�1) µs (mm�1) g

Capillaries 0.20 60 0.98
Non-capillaries 0.20 95 0.98
Extravascular 0.02 10 0.90

The intravascular absorption and scattering coefficients were interpolated from measure-
ments done by Meinke et al [31]. Extravascular absorption and scattering coefficients were
based on the in vitro measurements by Yaroslavsky et al [32]. It was necessary to use in vitro
measurements of the extravascular tissue because blood was assumed to only be present in in-
travascular space. The in vitro measurements were taken in the absence of blood. Table 1 lists
the optical properties used in these simulations.

Camera-based detection optics were used for these simulations, which models the commonly
used LSCI imaging method [12]. A 1mm collimated beam was used to illuminate the surface
of the geometry, and a 30 µm square region of interest (ROI) with an NA of 0.25 was used as
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Fig. 2. Comparison of experimental and simulation results from PDMS phantom experi-
ment. (a) Shows the simulation (-) and experimental (x) results at four different constant
linear speeds. (b) and (c) show the simulated histograms of q ·v and the number of scatte-
ring events.

the detector to mimic a single camera pixel. Two ROIs were chosen, one over a large surface
vessel and one over a region without surface vessels.

The depth-dependent flow contribution to the autocorrelation function was determined by
successively reducing the flow of each 50 µm layer of the geometry to 5% of the baseline flow.
To perform the perturbation, the values Yi,n which arise from coordinates inside the perturbed
region are scaled by 0.05 and the autocorrelation function is recalculated according to Eq. (11).
The autocorrelation time constant tc was determined and the baseline tc from the unperturbed
calculation was subtracted to determine the change in tc corresponding to flow in each layer.

5. Results

5.1. Experimental validation

Using the DLS-MC method, 1⇥109 photons were simulated in approximately 5 minutes using
200 cores on the TACC Lonestar cluster. A 150 µm⇥150 µm ROI resulted in approximately
8⇥ 107 detected photons in the Monte Carlo simulation. Calculation of g1 using the photon
scattering coordinates and the velocity data took less than 2 minutes.

Figure 2 shows the results of the comparison between the PDMS phantom measurements and
simulations. In Fig. 2(a) shows the squared electric field autocorrelation function for both the
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Fig. 3. Example calculation of autocorrelation function of mouse cortical microvasculature.
Two photon maximum intensity projection of microvasculature stack is shown in (a).

experimental measurements and the simulations. Figure 2(b) shows the distribution of the inner
product of the scattering and velocity vectors in the simulation when v = 1.0 mm/s. In the case
of constant uniform motion, the successive scattering vectors cancel out and ÂN

i=1 qi = kN � k1.
Given that the velocity vector is nearly perpendicular to both the entering and exiting wavevec-
tors, the q · v value is primarily a function of the NA of the illumination (0.01) and detection
(0.03). Figure 2(c) shows the histogram of the number of scattering events experienced by
photons in the simulations. This provides additional verification that the numerical method is
performing as expected, as the q · v value is unchanged and depends only on kN and ki, even
though the photons undergo a significant number of dynamic scattering events, all of which are
included in the calculation of the simulated g1(t).

5.2. Cortical blood flow simulations

The results of the microvasculature simulation are shown in Fig. 3. The ROIs of the surface
vessel and non surface vessel ROIs are shown as overlays in Fig. 3(a). The form of |g1(t)|2
shown in Fig. 3(b) shows a significant difference between the two ROIs. This is unsurprising
as the speed in the targeted surface vessel is 5.0 mm/s, whereas the speed in capillaries is 1.0
mm/s. Furthermore, the surface vessel autocorrelation function decays significantly faster for
two other reasons.

First, the surface vessel ROI has significantly more dynamic scattering events on average,
as shown in Figs. 3(c)–3(d). Each dynamic scattering event along a photons path generates
an additional phase accumulation term, so even with a uniform velocity the ROI with more
scattering events will decay more quickly.
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Fig. 4. The change in tc from a 95% change in flow velocity for the (a) surface vessel ROI
and (b) parenchyma ROI in each 50 µm layer of the geometry.

Additionally, the photons traveling through the surface vessel undergo multiple highly cor-
related sequential scattering events. This manifests as the asymmetrical features in the distribu-
tion of q ·v in Fig. 3(e). Since the photons traveling primarily through the capillary bed usually
scatter only once per vessel, the distribution of q ·v shown in Fig. 3(f) is more symmetrical.

The sensitivity of tc to changes in flow velocity are shown in Fig. 4 for the surface vessel
and parenchyma ROI shown in Fig. 3(a). For each 50 µm perturbed layer, the autocorrelation
function took approximately 10 seconds to calculate. The depth-dependent sensitivity required
30 perturbation volumes to represent the top 750 µm as shown in Fig. 4. While the changes in
tc shown are calculated using assumed velocity values, they do demonstrate the utility of the
DLS-MC method to determine the sensitivity of g1(t) to flow changes.

The depth-dependent changes in tc show that the surface vessel ROI sensitivity in Fig. 4(a)
is strongly weighted towards the surface of the geometry. By contrast, the parenchyma ROI in
Fig. 4(b) demonstrates a slower decline of sensitivity with increasing depth into the tissue.

6. Discussion

The results demonstrate that this method is capable of generating distributions of the scattering
phase (i.e. q ·v) that were previously not predicted by analytical methods. For example, in the
case of the surface vessel ROI shown in Fig. 3(e), the distribution of q · v contains additional
features which could not be predicted by traditional analytical formulations.

The commonly used distributions are assumptions based on the predicted (or simplified) na-
ture of dynamic interactions between photons and moving particles. The Gaussian distribution
is a good assumption when successive dynamic scattering events are independent, or when pho-
tons scatter only once dynamically and each particle trajectory is independent. This requirement
is met in some conditions. For example, when particles are diffusing in a random-walk, the par-
ticle direction at any time t is independent of every other time. Dynamic interactions between
photons and diffusing particles are, therefore, independent and follow a Gaussian distribution.

However, when the system has regions of ordered flow, as in the example of perfused brain
tissue, the photon-particle interactions are not always independent. In the capillary bed, where
the complex network of vessels are arranged somewhat randomly and photons scatter only
once in each vessel, the successive dynamic scattering events can be said to be independent.
In larger vessels (arterioles, arteries, veins, etc), where photons scatter more than once before
exiting the vessel, the independence assumption breaks down. In this case, the commonly used
distributions are not sufficient to separate the effects of increased particle velocity and increased
fluid volume.
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Furthermore, the depth-dependent change in tc shown in Fig. 4 demonstrates the possibility
of using the DLS-MC method to determine the sensitivity of dynamic light scattering tech-
niques to changes in flow velocity. Perturbation based Monte Carlo methods have the advan-
tage of sharing noise among each separate calculation [27], which allows for a more precise
determination of the effect of particle velocity changes on the time varying dynamics of the
system.

7. Conclusion

We have demonstrated a numerical method by which the electric field autocorrelation function
is calculated for arbitrary geometries. The method makes no assumptions regarding the number
of scattering events, the final form of the autocorrelation function, or the degree of correlation
between scattering events. We have validated the method using static PDMS phantoms and ver-
ified that the simulations match both the expected form and the experimental results. Finally,
we demonstrated the utility and perturbation-capabilities of the method by calculating the auto-
correlation function of flow in a representation of mouse microvasculature and calculating the
sensitivity to flow changes as a function of depth.
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