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Accurate interpretation of functional MRI (fMRI) signals requires 
knowledge of the relationship between the hemodynamic re- 
sponse and the neuronal activity that underlies it. Here we address 
the question of coupling between pre- and postsynaptic neuronal 
activity and the hemodynamic response in rodent somatosensory 
(Barrel) cortex in response to single-whisker deflection. Using 
full-field multiwavelength optical imaging of hemoglobin oxygen- 
ation and electrophysiological recordings of spiking activity and 
local field potentials, we demonstrate that a point hemodynamic 
measure is influenced by neuronal activity across multiple cortical 
columns. We demonstrate that the hemodynamic response is a 
spatiotemporal convolution of the neuronal activation. Therefore, 
positive hemodynamic response in one cortical column might be 
explained by neuronal activity not only in that column but also in 
the neighboring columns. Thus, attempts at characterizing the 
neurovascular relationship based on point measurements of elec- 
trophysiology and hemodynamics may yield inconsistent results, 
depending on the spatial extent of neuronal activation. The finding 
that the hemodynamic signal observed at a given location is a 
function of electrophysiological activity over a broad spatial region 
helps explain a previously observed increase of local vascular 
response beyond the saturation of local neuronal activity. We also 
demonstrate that the oxy- and total-hemoglobin hemodynamic 
responses can be well approximated by spacetime separable 
functions with an antagonistic center-surround spatial pattern 
extending over several millimeters. The surround "negative" he- 
modynamic activity did not correspond to observable changes in 
neuronal activity. The complex spatial integration of the hemody- 
namic response should be considered when interpreting fMRI data. 

Barrel cortex { blood oxygenation t intrinsic signals t optical imaging 

The advent of noninvasive imaging methods such as functional 
| MRI (fMRI) has made it possible to obtain spatial maps of 

hemodynamic "activation" in the human brain under a variety of 
conditions (1, 2). However, the indirect and poorly understood 
nature of the coupling between these hemodynamic signals and 
the underlying neuronal activity has greatly limited the inter- 
pretability of neuroimaging results. Recently, several groups 
have attempted to characterize this coupling in the form of a 
linear or nonlinear neurovascular "transfer function" (3-8). In 
principle, if such a function could be defined, it would provide 
a basis for inferring time-averaged local neuronal activity based 
on hemodynamic measurements. Furthermore, it would permit 
more accurate integration of hemodynamic imaging methods 
with noninvasive electrophysiological recordings such as elec- 
troencephalography and magnetoencephalography (9, 10). 

In a previous publication (3), using simultaneous spectro- 
scopic optical imaging and electrophysiological measurements in 
rodent somatosensory cortex during brief and spatially localized 
stimuli, we found a strongly nonlinear relationship between point 
hemodynamic and neuronal signals. Specifically, our results 
showed that with an increase in stimulus amplitude, the hemo- 

dynamic response recorded from the region of interest (ROI) 
surrounding the recording electrode increased beyond the sat- 
uration of electrical activity as reflected in multiple unit activity 
(MUA) and local field potential (LFP) measurements. Subse- 
quently, other groups have produced consistent results in the 
same system by using both tactile and electrical stimuli (4, 8). 

This apparent mismatch between neuronal and hemodynamic 
behavior may result from neuronal processes, such as a neuro- 
transmitter release from presynaptic thalamic terminals, unde- 
tected by the electrophysiological recording methods used (11- 
13). Here we present data showing that the hemodynamic 
response within a cortical column (a principal barrel in Barrel 
cortex) increases beyond saturation of the thalamic input to the 
same column. It is therefore likely that the hemodynamic 
response measured in the principal barrel column is driven at 
least in part by neuronal activity outside the column. Indeed, the 
neuronal response in neighboring barrels was observed to in- 
crease throughout the stimulus range, thus providing a potential 
explanation for monotonically increasing hemodynamic re- 
sponse within a principal barrel beyond saturation of the local 
electrophysiological response. 

Methods 
The methods are described in detail in ref. 3. 

Animal Preparation. Male Sprague-Dawley rats (n = 17, 250-350 
g, Taconic Farms) were used. All experimental procedures were 
approved by the Massachusetts General Hospital Subcommittee 
on Research Animal Care. Rats were initially anesthetized with 

l.SSo halothane and ventilated with lSo halothane in a mixture 

of air and oxygen. Halothane was discontinued, and anesthesia 
was maintained with a 50-mgkg-1 i.v. bolus of a-chloralose 
followed by continuous i.v. infusion at 40 mgkg-lh-l. Heart 
rate, blood pressure, blood gas, and body temperature were 
monitored. 

An area of skull overlying the primary somatosensory cortex 
was exposed and then thinned until soft and transparent (100 
,um). A well of petroleum jelly was built and filled with mineral 
oil (Sigma). A small hole was made in the thinned skull over the 
center of a barrel, as determined by optical imaging, and the 
recording electrode was introduced through the dura mater. For 
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Fig. 1. Spatiotemporal evolution of the hemodynamic reponse. (a) Full-field time series of HbO, Hb, and HbT signals (an average of the six strongest stimulus 
amplitudes) were calculated from six wavelength data. Each image represents an individual frame (average of 1,400 trials). Time between consecutive images 
is 200 msec. (b) A continuation of the time series shown in a. The signal for Hb and HbO is expressed in percent change relative to its own baseline concentration 
(40 and 60 ,uM, respectively, were assumed for all animals). HbT was calculated as a sum of Hb and HbO. 

Stimulation Paradigm. Single whiskers were deflected upward by 
a wire loop coupled to a computer controlled piezoelectric 
stimulator. We used a fast randomized event-related stimulus 
presentation paradigm analogous to that used in event-related 
fMRI studies. The stimulus sequence was optimized for event- 
related response estimation efficiency by using the approach 
described by Dale (16). The stimulation paradigm consisted of 
single deflections of varying amplitude with an interstimulus 
interval of 1 sec. We used 27 stimulus amplitudes. Intervening 
amplitudes were spaced with equal increments on a linear scale. 
The stimulus angular velocity increased from 203° per sec 
(vertical displacement of 240 ,um, amplitude 1) to 969° per sec 
(vertical displacement of 1,200 ,um, amplitude 27). For each 
stimulus condition, we averaged 240 trials for each animal. 

Results 
The Barrel cortex in the rat is well suited for studying localized 
cortical activations due to precise mapping of each one of the 
large facial vibrissae (whiskers) onto a specific cortical area, 
called a barrel (17). In agreement with previous reports, tactile 
stimulation of a single facial whisker produced spatially localized 
optical signals centered on the principal barrel and extending 
well beyond one cortical column (18). Fig. 1 shows activation 
maps of HbO, Hb, and HbT as a function of time after deflection 
of a single whisker. These maps were calculated by using full-field 
time-resolved spectral optical measurements obtained with a 
rotating filter wheel (see Methods). In agreement with our 
previous report (3), an initial increase ("initial dip") in Hb was 
accompanied by an initial decrease in HbO, both preceding an 
increase in HbT (Fig. 1; see also Fig. 7, which is published as 
supporting information on the PNAS web site). These early 
changes may correspond to a local increase in oxygen consump- 
tion preceding an increase in blood flow (19, 20). A subsequent 
increase in HbT (reflecting an increase in blood volume under 
the assumption of constant hematocrit) was accompanied by a 
reversal of sign in both Hb and HbO signals, presumably 
corresponding to washout of Hb by increased blood flow (21). 
The hemodynamic signals always exhibited an antagonistic cen- 
ter-surround spatial pattern. The increase in HbO and HbT 
centered on the principal barrel was always accompanied by 
corresponding decreases in the surround. Similarly, a decrease in 

recordings involving laminar probes, the thinned skull and dura 
mater were removed. 

Spectroscopic Optical Imaging. To illuminate the cortex, light from 
a mercury xenon arc lamp was directed through a six-position 
rotating filter wheel (560, 570, 580, 590, 600, and 610 nm) 
coupled to a 12-mm fiber bundle. Images of a 4.5- to 6-mm2 area 
were acquired by a cooled 12-bit charge-coupled device camera 
(Coolsnap, Photometrics, Tucson, AZ). Image acquisitions were 
triggered at 15 Hz by individual filters in the filter wheel 
passing through an optic sensor (14). The spectral data were 
converted to percent change maps for deoxyhemoglobin (Hb), 
oxyhemoglobin (HbO), and total hemoglobin (HbT) by using the 
modified Beer-Lambert law (14). Differential pathlength cor- 
rection was applied to adjust for the differential optical path- 
length through the tissue at different wavelengths. The point- 
spread function for the optical signal was estimated as 100 ,um 
in the lateral plane at a depth of 400 ,um from the cortical 
surface. 

Electrophysiological Recordings. Electrophysiological recordings 
were performed by using either single metal microelectrodes 
[FHC (Bowdoinham, ME), 5-7 MQ] or linear array multielec- 
trodes with 24 contacts spaced at 100 ,um (15). Layer IV was 
identified by depth and a selective response to the principal 
whisker. By using array microelectrodes, the depth was estimated 
based on a contact number when contact no. 1 was positioned at 
the cortical surface by using visual control. A contact with the 
strongest selectivity was identified by listening to an audio 
monitor while stimulating different whiskers. The signals were 
amplified and filtered between 500 and 5,000 Hz to record MUA 
and between 0.1 and 500 Hz to record LFP. The MUA signals 
were rectified on the time axis before averaging. Averaged LFP 
curves were rectified on the time axis before integration. In 
cortex, the microelectrodes were positioned in lower layer II/III 
(400-500 ,um). The ventral posteriomedial thalamic nucleus 
(VPM) and the medial division of the posterior thalamic nucleus 
(POm) were targeted by using stereotactic coordinates (VPM, 
AP -3.6 to -3.0, ML 2.0 to 3.5, and DV 5.0 to 7.0; POm, AP 
-4.3 to -3.5, ML 1.5 to 2.5, and DV 5.0 to 6.5). 
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Table 1. Percent variance explained by the first principal 
component analysis for HbO, Hb, and HbT signals 

Case ID HbO Hb HbT 

72204 94.00 76.00 95.00 

72604 79.00 42.00 85.00 

60704 70.00 36.00 82.00 

60104 68.00 35.00 76.00 

60204 85.00 58.00 87.00 

Each row represents one case (one animal). ID, identification. 
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surround negativity well outside the Barrel cortex. An ampli- 
tude of the hemodynamic response increased with an increase 
in stimulus intensity in both the center and surround ROIs 
(Fig. 2b), with a surround amplitude in average 10No of that 
in the center. A comparison of hemodynamic responses aver- 
aged from 300 x 300-,um ROIs around recording electrodes 
with electrophysiological recordings showed no change in 
neuronal activity in the surround region (Fig. 2 d and e; see also 
Fig. 8, which is published as supporting information on the 
PNAS web site). Thus, the surround negative response did not 
correspond to local neuronal inhibition, as measured by our 
methods. The spatiotemporal pattern of the hemodynamic 
activity including the biphasic spatial pattern is also evident in 
our previous data using a different anesthesia agent, urethane, 
which indicates a conservation of the phenomenon across 
anesthesia conditions and rules out a possibility that the 
center-surround pattern is an artifact of ce-chloralose (3). 

Principal component analysis revealed one dominant compo- 
nent explaining most of the variance for the HbO and HbT 
spatiotemporal observations and, to a lesser extent, Hb (Table 1; 
see also Fig. 9, which is published as supporting information on 
the PNAS web site). The more complex behavior of Hb may 
reflect a combination of competing effects of oxygen consump- 
tion, blood volume changes, and washout process at different 
timescales. The stimulus dependence of the surround negativity 
(Fig. 2b) and the results of principal component analysis indicate 
space-time separability of HbO and HbT hemodynamic activa- 
tion, where the response at every time point and stimulus 
amplitude represents a scaling version of a fixed center-surround 
spatial pattern. 

Consistent with our previous results (3), the hemodynamic 
response within the principal barrel continued to increase be- 
yond saturation of MUA and LFP recorded from the same barrel 
(Fig. 3; see also Fig. 10, which is published as supporting 
information on the PNAS web site). The hemodynamic response 
in the principal barrel increased monotonically throughout the 
stimulus range. An approximately linear relationship was ob- 

stimulus amplitude 

Fig. 2. The hemodynamic response has an antagonistic center-surround 
spatial pattern. (a) An image of HbO at the peak of the response. (b) Integral 
HbO (red) and HbT (black) responses as a function of stimulus intensity in the 
center (principal barrel, ROl in) and surround (>3 mm away from the record- 
ing electrode, ROl out). Data from five animals were averaged, and all am- 
plitudes are shown. The error bars reflect the intersubject standard error. The 
center and surround response amplitudes in every animal were normalized to 
the maximal response amplitude in the center ROI for that animal before 
averaging the data across animals. Note that the magnitude of the negative 
surround response is on average 10% of that in the center. (c) The locations 
of electrophysiological recordings are superimposed on the image of the 
vasculature corresponding to the functional map in a. Recordings from loca- 
tions m 1 and m2 were performed after recordings from C3 and D1 barrels (the 
electrodes are visible on the image). The indicated approximate location of 
the Barrel field was determined by fitting the position, size, and orientation 
of a typical histology sample based on the locations of two identified barrel 
columns (C3 and D1). (d) Time courses of HbT response averaged from 300 x 
300 ,um ROls around recording electrodes. The locations are color coded in a 
and c. (e) MUA recorded from the locations marked in c. Responses to seven 
largest stimulus amplitudes are averaged in d and e. The vertical scales for the 
top and bottom plots in d and e differ by factor of 5. The arrow denotes 
stimulus delivery. 

Hb in the center was always accompanied by an increase in the 
surround. 

A comparison of the center-surround pattern of the HbO 
response at the peak of activation (Fig. 2a) to an estimated size 
of the Barrel cortex (Fig. 2c) shows that the center "positive" 
activity covers approximately the entire Barrel cortex, whereas 
the surround "negativity" is present outside Barrel cortex, and 
even outside the primary somatosensory cortex (22). The 
hemodynamic response as a function of stimulus intensity was 
investigated in the regions corresponding to the principal 
barrel and the surround 'negativity" (Fig. 2). The first ROI 
was defined as a 300 x 300-,um area around the electrode used 
to record spiking (MUA) and synaptic (LFP) neuronal activity 
from the principal barrel. Taking into account the distance 
between the adjacent barrels of 500 ,um (23), this ROI 
reflected the hemodynamic response in the principal barrel 
column. The second ROI was defined as all pixels at least 3 mm 
away from the recording electrode, reflecting the region of 

a. 

27 vio 

Fig. 3. The local hemodynamic response increases beyond saturation of local 
neuronal activity. (a) Integral HbO (red) and HbT (black) responses averaged 
from 300 x 300 ,um ROI around the electrode recording from the principal 
barrel as a function of stimulus intensity. Data from eight animals were 
averaged, and all amplitudes are shown. The error bars reflect the intersubject 
standard error. (b) MUA (Left), LFP (Right) peak (red), and integral (black) 
responses as a function of stimulus amplitude. The data were averaged across 
the same subjects as in a. The curves were fitted by using the function 
ax/(1 - bx)'. 
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Fig. 5. Neither lemniscal nor paralemniscal inputs increase beyond satura- tion of the postsynaptic activity. (a) MUA activity was simultaneously recorded from VMP and POm by using two laminar electrode arrays. Responses for different stimulus amplitudes (Inset) are superimposed for VPM (a) and POm (b). The peak (black) and integral (red) response as a function of stimulus intensity was fitted by using the function ax/(1 -bx)'. 

digms such as whisker deflections with different rise time (33), prolong "ramp-and-hold" trapezoids (34) or repetitive stimula- tion (28). 
The results of simultaneous laminar recordings of MUA from VPM and POm are shown in Fig. 5. In agreement with previous reports (32), POm responses peaked later in time (Fig. Sb) and were distributed through a number of recording electrodes indicating diffuse mapping (data not shown). Recordings from the electrode with the shortest delay are shown in Fig. 5. Both VPM and POm MUA responses, measured either as peak values or an integral under the curve (Fig. 5 Right; see also Fig. 11, which is published as supporting information on the PNAS web site) saturated with an increasing stimulus intensity. Because the hemodynamic response recorded from the prin- cipal barrel increases beyond saturation of both the pre- and postsynaptic activity localized to the same barrel, processes outside the principal barrel must contribute. To investigate the MUA and LFP behavior in neighboring cortical columns, we performed simultaneous recordings from the principal barrel and a neighbor barrel (Fig. 6; see also Figs. 12 and 13, which are published as supporting information on the PNAS web site). In agreement with previous reports, MUA and LFP activity in the neighbor barrel had a smaller amplitude and a slower rise (Fig. 6 a and b) (35). Fig. 6d shows locations of the electrode recordings from columns corresponding to 8, D2, and D3 whiskers. The fastest saturation of the neuronal activity was present in the principal barrel column 8 (Fig. 6C, red), followed by D2 column located two columns away (Fig. 6C, blue). In the D3 column, located three columns away from the principal barrel, neuronal activity increased close to linear throughout the stimulus range (Fig. 6c, green). 
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Our results show that the neurovascular transfer function is nonlocal, i.e., the hemodynamic signal observed at a given location is a function of electrophysiological activity over a broad spatial region. Thus, attempts at characterizing this function based on point measurements of electrophysiology and hemo- dynamics may yield inconsistent results, depending on the spatial extent of neuronal activation. This may explain some of the apparent discrepancies in the neurovascular relationship be- tween the results reported while using varying stimulus frequen- cies vs. varying stimulus amplitudes in rat Barrel cortex (5-8). 
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Fig. 4. Thalamic VPM and cortical responses saturate with an increase in stimulus intensity. (a 1) MUA activity was recorded simultaneously in thalamus (VPM) by using a single metal electrode and in the cortex by using a laminar electrode array. Responses for different stimulus amplitudes (Inset) are super- imposed for VPM (Upper) and cortical layer IV (a2). An input impedance of recording electrodes, 7 MQ in the VPM and 0.2 MQ in the cortex, explains differences in signal-to-noise ratio. (bl) VPM (black) and cortical layer IV (red) peak response as a function of stimulus intensity. The curves were fitted by using the function ax/(1 -bx)'. (b2) Granule (layer IV, red), supragranule (blue) and infragranule (green) peak responses as a function of stimulus amplitude. 

served between the hemodynamic response, measured as the integral under the timecourse curve, and the stimulus amplitude (Fig. 3a). Note that the conserved spatiotemporal pattern of the hemodynamic response for HbO and HbT (Fig. 9) implies that a time course averaged from any other ROI will behave as a scaled version of that from the principal barrel ROI. In contrast to the hemodynamic response, spiking and synaptic neuronal activity recorded from the principal barrel as MUA and LFP, respectively, exhibited saturation with an increase in stimulus intensity. LFP measures a weighted sum of transmembrane currents due to synaptic and dendritic activity (24, 25), whereas MUA measures population spiking activity (26, 27). We esti- mated a total evoked neuronal activity by using the integral under the curve and peak values for MUA and LFP. All measures showed pronounced saturation with an increase in stimulus intensity (Fig. 3b). 
Sensory inputs from the whisker pad reach Barrel cortex via two parallel pathways: lemniscal (via the VPM) and paralemnis- cal (via the medial division of the posterior thalamic nucleus, POm) (28-30). In the VPM, each facial vibrissa is mapped onto a cluster of cells (a barreloid) that sends its output to the corresponding cortical barrel (31). The POm has more diffuse maps, longer latencies, and a strong dependence on cortical feedback (32). To test whether the apparent mismatch between neuronal and hemodynamic behavior results from a presynaptic (thalamic) process, we performed simultaneous measurements from corresponding locations in the cortex and thalamus. Si- multaneous measurements from the corresponding barreloid in the VPM showed that the input cortical layer (layer IV) followed closely the thalamic input. Fig. 4 shows the MUA response in thalamus (Fig. 4al) and cortical input layer IV (Fig. 4a2). Fig. 4bl shows an increase in response in thalamus (black) and cortical layer IV (red) as a function of stimulus intensity. The same function [ax/(1-bx)C] fits well both cortical and thalamic VPM spiking activity. Therefore, the saturation of the MUA in layer IV of the cortex is fully explained by saturation in the input from the VPM. Note that the similarity in the cortical and thalamic responses under our stimulus conditions should not be taken as a general case. Thalamocortical response transforma- tion can be readily demonstrated by using other stimulus para- 
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Fig. 6. Neuronal activity in neighboring cortical columns increases throughout the stimulus range. MUA (a) and LFP (b) responses are plotted for the principal 
barrel (8) and two neighboring barrels (D2 and D3). Responses to different amplitudes are superimposed (Inset). The arrow denotes stimulus delivery. (c) MUA 
(Left) and LFP (Right) peak responses as a function of stimulus amplitude. The curves were fitted by using the function ax/(1-bx)'. (d) Locations of 
electrophysiological recordings are superimposed on the image of the vasculature. Recordings from barrel columns 8 and D3 (the electrodes are visible on the 
image) were performed after recordings from 8 and D2 barrels. 

does not necessarily preclude accurate localization of individual 
columns based on the center of mass of the hemodynamic 
response, e.g., due to deflection of individual whiskers (36), or 
by subtracting one stimulus condition from another (37, 38). 
However, it does limit the achievable resolution in terms of 
two-point separation (39). 

The relatively large spatial extent of the hemodynamic re- 
sponse is in agreement with previous optical imaging studies 
(18). Although spiking activity after a deflection of a single 
whisker is largely restricted to a small number of neighboring 
barrel columns (35), voltage-sensitive dye imaging shows that 
neuronal activity after a brief deflection of a single whisker 
spreads from the principal barrel column to cover a large part of 
the Barrel cortex (23). Both extensive lateral cortico-cortical 
connections (35, 40) and diffuse nonlemniscal inputs (32) might 
contribute to this significant lateral spread of neuronal activity. 
Because voltage-sensitive dye measurements are sensitive to 
subthreshold neuronal activity (41, 42), this observation also 
advocates a significant contribution of subthreshold synaptic 
activity to hemodynamic signals. 

In addition, a number of phenomena other than sub- or 
suprathreshold local neuronal activity have been demonstrated 
to contribute to increase the spatial spread of the hemodynamic 
response. Among them are the diffusion of vasodilator sub- 
stances such as NO from the active locus to nearby vessels (43, 
44) after an increase in intracellular calcium (45), conducted 
upstream and downstream vasodilatation (46, 47), and innerva- 
tion of cortical microvessels by cholinergic fibers originating 
from basal forebrain and/or 5-HT fibers originating from raphe 
nuclei. Both cholinergic and 5-HT inputs have been shown to 

induce significant increases in cortical perfusion upon stimula- 
tion (48, 49). 

The antagonistic hemodynamic changes observed in the sur- 
round, in the absence of corresponding neuronal deactivation, 
strongly suggest that the neurovascular transfer function has a 
center-surround structure. Our measurement of MUA and LFP 
in the surround area of hemodynamic activation failed to reveal 
any neuronal correlate such as surround neuronal inhibition. 
However, a possibility exists that a decrease in pyramidal neuron 
activity in the surround area is exactly balanced by an increase 
in inhibitory interneuron activity, resulting in unchanged MUA. 
It is also possible that dendritic activity of inhibitory interneu- 
rons would not show up on our LFP recordings due to their 
closed-field configuration. Although we cannot rule out this 
hypothesis based on the current data, we find it unlikely taking 
into account the spatial extent of the negative hemodynamic 
activation. In the present experiment, this negative surround 
extends beyond the Barrel cortex and even beyond the somato- 
sensory complex. To our knowledge, there have been no reports 
of electrophysiological response outside of the Barrel cortex to 
brief single-whisker deflection stimuli as used in this study. 
Negative surround activation has also previously been reported 
by using blood oxygen level-dependent fMRI in high-order 
visual areas where neuronal activation rather than deactivation 
is expected to occur under the stimulus conditions used (50). 

The stimulus amplitude dependence of the surround negativ- 
ity, along with the results of principal component analysis, 
suggests a spatiotemporal separability of the neurovascular 
transfer function for HbO and HbT. The corresponding analyses 
for Hb, on the other hand, reveal a more complex pattern of 
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results. Specifically, the spatial pattern of the Hb response varies 
as a function of poststimulus latency. A detailed analysis of 
spatiotemporal dynamics of Hb could provide more insight into 
the competing effects of flow, volume, and oxygen consumption 
(CMRO2) changes in blood oxygen level-dependent fMRI sig- 
nal, because this method is primarily sensitive to changes in 
Hb (51). 

A precise characterization of the neurovascular transfer 
function will require full-field imaging of both electrophysio- 
logical and hemodynamic parameters under different stimulus 
conditions, where the location and extent of neuronal activa- 
tion are systematically varied. This could be accomplished by 
combining simultaneous spectroscopic and voltage-sensitive 
dye imaging (52) during stimulation of different whiskers at 
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The complex spatial and temporal structure of the neurovas- 
cular transfer function evident in the present study has important 
implications for the proper interpretation of fMRI results and 
for the integration of different imaging modalities (10). In 
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nonlinear gain of the neurovascular coupling have to be consid- 
ered to draw valid inferences about neuronal activity from 
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