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Abstract:  We combine the finite-difference time-domain method with 
pulse response techniques in order to calculate the light scattering properties 
of biological cells over a range of wavelengths simultaneously.  The method 
we describe can be used to compute the scattering patterns of cells 
containing multiple heterogeneous organelles, providing greater geometric 
flexibility than Mie theory solutions.  Using a desktop computer, we 
calculate the scattering patterns for common homogeneous models of 
biological cells and also for more complex representations of cellular 
morphology.  We find that the geometry chosen significantly impacts 
scattering properties, emphasizing the need for careful consideration of 
appropriate theoretical models of cellular scattering and for accurate 
microscopic determination of optical properties. 
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1. Introduction 

Recent work has suggested that elastic light scattering spectroscopy can provide a valuable, 
non-invasive means to quantitatively probe tissue morphology.  A number of studies have 
demonstrated that elastic scattering can be used to differentiate normal and diseased tissues in 
several organ sites including the skin, bladder, and colon [1-5].  More recently, several 
investigators have reported methods to extract quantitative features related to tissue 
morphology from reflectance spectra.  Mourant et al. reported that the size of scatterers could 
be determined from elastic scattering spectra using Mie theory [6].  This work involved tissue 
phantoms comprised of polystyrene spheres and Intralipid.  Perelman et al. described a 
technique for obtaining nuclear size distributions by Fourier transformation of the scattering 
spectra [7].  Zonios et al. reported a method to extract effective scatterer sizes from colon 
tissue spectra based on a Mie theory model [5].  In order to isolate the scattering signal due to 
cell nuclei from diffuse background scattering, which is typically orders of magnitude larger, 
Backman et al. [8] and Sokolov et al. [9] proposed techniques based on polarized light 
scattering spectroscopy.  These polarization-based techniques assessed size and refractive 
indices of cell nuclei using Mie theory models.  The use of polarization provided a means to 
distinguish between single and multiply scattered light and reduced the effects of hemoglobin 
absorption.  All of the studies noted above developed models based on Mie theory which 
could adequately describe experimental data, offering a potential approach to extracting 
quantitative information from the scattering spectra. 

Although a number of studies have shown promising results using Mie theory models, the 
ability to match a model with experimental data does not necessarily indicate the model is the 
best model or even an appropriate one.  There is not convincing experimental evidence that 
justifies the use of Mie theory as an accurate model of cellular and/or nuclear scattering.  Mie 
theory is commonly applied to model scattering from cells largely because it is the only 
simple analytical model available.  In fact, experimental evidence at times suggests a Mie 
theory model of a biological cell may not be appropriate.  For instance, work by Mourant et 
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al. found that the scatterer sizes in biological cells ranged from 0.4 to 2.0 µm, a size consistent 
with organelles smaller than a cell’s nucleus [10].  Moreover, the same study showed that the 
nucleus contributed mostly to low angle scattering while smaller organelles contributed to 
high angle scattering, which may be particularly pertinent to reflectance measurements 
acquired using fiber-based probes with small source-detector separations.  Other studies have 
also produced results which indicate that Mie theory may not always be a sufficient model.  
For instance, McGann et al. clearly demonstrated that forward scattering of lymphocytes 
varied inversely with cell volume.  This would not be expected from a Mie theory model of 
scattering and emphasizes that cellular light scattering cannot always be adequately described 
using the simplest conceivable geometric model [11].  Additional research has described 
significant changes in backscattering obtained when a coated sphere (cell with membrane) 
[12] or concentric sphere (nucleated cell) [13] model was used rather than a single sphere 
model, further emphasizing the importance of a prudent approach to choosing a cell model 
since the scattering predicted is a strong function of the geometry chosen.  

Based on the available experimental evidence, it seems likely that there will be cells 
which cannot be adequately modeled as a homogeneous sphere.  For such cases, a more 
flexible alternative than Mie theory is required.  We provide one possible solution in this 
paper.  The method we describe can be used to calculate light scattering from cells of 
arbitrarily complicated shape and dielectric structure.  Our approach is based on a standard 
finite-difference time-domain (FDTD) technique [14].  In the past, the primary limitation of 
the FDTD technique has been the need for an individual FDTD run for each frequency of 
interest, making the technique impractical for calculations at more than a few frequencies.  In 
this paper, we modify the standard approach incorporating pulse response techniques which 
provide a means to calculate light scattering properties over a broad frequency range using 
only a single FDTD run. 

Because the computational time requirements of the proposed method are extremely 
modest, requiring little more time than equivalent Mie theory calculations, the method can be 
efficiently used to compute light scattering for any desired model of a cell, from models as 
simple as a single sphere or coated sphere to cell models containing numerous organelles and 
intricate dielectric structure.  The purpose of this paper is two-fold:  first, to provide a detailed 
description of the practical implementation of the method, and second, to use the method to 
compute the scattering properties of cells modeled using progressively more complex 
geometries and to demonstrate that the cell model used significantly impacts the scattering 
properties.  
 

2. Methods 

The FDTD algorithm provides a means to numerically solve Maxwell’s equations in the time 
domain.  The method is briefly reviewed here.  A more detailed explanation is found in [14].  
The algorithm begins by discretizing Maxwell’s curl equations in space and time, resulting in 
a set of explicit finite-difference equations.  The finite-difference equations are stepped in 
time, and the electric and magnetic field components at each grid point are alternately 
updated.  To prevent artificial reflections along the edges of the grid, an appropriate boundary 
condition must be employed.  In this paper, the Liao boundary condition was used [15].  For 
applications requiring a larger dynamic range, the PML boundary condition may be applied to 
provide at least 80 dB additional suppression [16]. 

To yield accurate results for a given wavelength, the grid spacing used must be less than 
wavelength, typically λ/10 or smaller.  At each grid point, the permittivity and conductivity of 
the medium is specified.  The cell is constructed by assigning permittivity values to each cell 
component.  A range of values may be assigned to a particular component if that component is 
inhomogeneous.  Details regarding the application of the FDTD method specifically to 
biological cells, including refractive index values for specific cellular constituents, may be 
found in [17-19]. 
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In a standard FDTD model, a plane wave is propagated throughout the grid until a steady 
state solution is obtained.  At this point, the electric and magnetic field values are known on 
the entire grid which lies in the near field.  To compute the scattering pattern in the far field, a 
near field to far field transformation is required.  For two-dimensional FDTD, this is 
accomplished by weighting the near field data with the free space Green’s function, written in 
terms of the zero-order Hankel function, H0

(1)(r), and integrating over a surface completely 
encompassing the cell [14].  Using this conventional approach, it is necessary to complete a 
separate FDTD run for each frequency of interest. 

A number of researchers have proposed more efficient approaches to obtaining a 
frequency response using the FDTD method [20, 21].  These approaches have been applied to 
calculate the frequency response of such objects as perfectly conducting cylinders, cones, 
spheres, and boxes [20, 21].  In this paper, we apply similar methods to calculate the 
frequency response over a range of interest for biological cells.  The fundamental idea behind 
frequency response FDTD is to provide excitation in the form of a time-limited pulse and to 
obtain a frequency response by Fourier transformation of the field component waveforms as 
described below [20]. 

The pulsed FDTD technique provides a means to obtain a frequency response in only one 
FDTD run with approximately the same computational requirements of a single frequency 
run.  The grid dimensions and incident pulse are determined based on the lowest wavelength 
of interest.  Either a Gaussian or raised cosine pulse can be used as the excitation source for 
pulsed FDTD; in this work, a Gaussian pulse was employed.  To obtain the frequency 
response, the magnitude and phase of the time domain waveforms are determined using a 
discrete Fourier transform (DFT).  The discrete Fourier transform is expressed as shown in 
Eq. (1): 
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where g(n∆t) is the field value, n is the time step, N is the length of the DFT, ∆f is the 
frequency resolution, k is the frequency index, and NF is the number of frequencies [20].  The 
summation in Eq. 1 is updated at each time step for each field component.  At the end of the 
simulation, the frequency values are normalized by the DFT of the incident pulse.  The 
problem converges when the applied pulse has decayed to zero for all grid positions.   

It should be pointed out that for the two-dimensional case, the memory required for 
continuous wave (single frequency) FDTD increases linearly with the number of grid 
elements.  Given a grid containing 250x250 elements, the memory required for a single 
frequency calculation is approximately 500 Kb to store the necessary field values and 0.18 Kb 
to store far field intensity information sampled every 2 degrees.  To perform the same 
simulation using 100 frequencies, 500 Kb is still required to store field values, but now 100 
times more memory, or 18 Kb, is required to store the far field intensities.  Relative to the 
overall problem size, the additional memory burden imposed to obtain spectral data rather 
than single frequency data is very minor.  All simulations described in this paper were 
performed using a two-dimensional FDTD code.  The 2D code is advantageous in that 
memory requirements are modest (<1 Mb of memory) and calculations are rapid, requiring 
approximately two minutes on a 500 MHz desktop computer.  The techniques described are 
equally applicable to three-dimensional simulations.   

 

3.  Results 

3.1 Code Verification  
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Since only sparse references to pulsed FDTD are found in the electromagnetic literature, a 
series of simulations were run to verify that the method produced results in agreement with 
Mie theory for a series of non-conducting objects.  The first test geometry consisted of a 12 
µm grid containing a 4 µm circular object (m = 1.02).  The scattering diagrams for 
wavelengths ranging from 1 µm to 2 µm with a 5 nm increment were computed.  The use of 
the terms scattering diagram, a, n, x, and m follow the definitions of van de Hulst [22].  The 
term "scattering diagram" refers to a plot of the scattered intensity as a function of angle.  
When the scattering diagram is normalized so that a value of one is obtained when integrated 
over 4π steradians, the curve is referred to as a phase function.  Throughout this paper, the 
quantity m refers to relative refractive index, a refers to the scatterer radius, λ = λ0/n where n 
is the index of refraction of the medium surrounding the object and λ0 is the wavelength in 
vacuum, and x = 2πa/λ.  FDTD data were compared to an analytical solution computed using 
Mie theory.  Results are shown in Figure 1.  The FDTD curves agree closely with theoretical 
predictions.  The discrepancy between Mie theory and FDTD data at the highest angles is due 
to imperfect boundary conditions.  The two curves shown in Figure 1 demonstrate that in 
some cases there is a precise match with theoretical predictions at all angles while in other 
instances imperfections in the boundary conditions can influence the high angle data (>165°).  
The top curve in Figure 1 shows worst case data; the bottom curve shows best case data.  It 
should be pointed out that high angle discrepancies between FDTD data and theory are most 
prominent when the dynamic range of the problem is large.    

 
Fig. 1.  Validation of the pulse response FDTD code.  Comparison of FDTD pulse response 
results with Mie theory predictions for a 4 µm circular object (m=1.02, λ=1 µm and λ=2 µm).  
Curves are normalized to scattered intensity at 0°. 

 
To provide a more extensive test of the code against Mie theory, the FDTD code was 

used to replicate curves shown in van de Hulst [22].  The simulation used a homogeneous 
cylinder geometry (m=1.5) with x ranging from 1.2 to 2.4.  Tabulated values for particular 
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points along the set of curves {x=1.2, x=1.6, x=2.0, x=2.4} were calculated by Rayleigh and 
are tabulated in [22].  FDTD results are shown in Figure 2.  The left half of the figure shows 
four individual scattering diagrams.   The right half of the figure shows the complete set of 
results.  The vertical axis of each scattering diagrams is the scattered intensity, or using the 
notation of van de Hulst, the quantity (2/π)|T(θ)|2 [22].  There were not high angle 
discrepancies in this simulation.    

 

Fig 2.  Validation of the pulse response FDTD code.  Calculated scattering diagrams for a 
series of infinite cylinders (m=1.50, x=1.2 to 2.4).  The left graph shows curves obtained by 
plotting the intensity data corresponding to particular size parameters.  The right image 
displays the calculated scattering over a range of size parameters.  The color scale corresponds 
to the log of the scattered intensity.  Each curve in the graph on the left corresponds to a 
horizontal line through the image on the right.   

 

3.2 Comparison of Cell Geometries 

To demonstrate some of the potential applications of pulsed FDTD to modeling scattering 
from biological cells, a number of simulations were performed, each over a broad wavelength 
range.  The first set of simulations was designed to demonstrate how the different organelles 
which constitute a cell contribute to scattering.  Four cases were considered.  First, the cross-
section of the nucleus of a cell was modeled as a homogeneous circle.  Second, the cytoplasm 
of the cell was modeled as a homogenous circle.  These homogeneous cases are the 
geometries most often used to generate data concerning cellular scattering since the scattering 
intensities are obtainable via Mie theory.  After considering the first two cases, the cell was 
next modeled using a concentric circle geometry consisting of a homogeneous circle 
representing the cytoplasm and a second interior circle representing the nucleus.  Several 
investigators have employed a concentric sphere model of cellular scattering since analytical 
solutions for this geometry are available in the literature [12, 23].  Finally, organelles of 
various sizes and indices of refraction were added into the concentric circle model (cytoplasm 
plus nucleus) to demonstrate the effect of heterogeneities in refractive index structure on 
scattering properties.    This set of simulations, in which cellular geometries were defined in a 
progressively complex manner, is useful in examining how various portions of the cell 
contribute to scattering. 

For each of the four geometries described, the light scattering intensity functions 
(scattering diagrams) were calculated over a range of wavelengths.  To facilitate comparisons 
between the four cases, the cell cytoplasm when present had a diameter of 8 µm, and the 
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nucleus had a diameter of 4 µm.  Refractive index values for the cytoplasm and the nucleus 
were 1.37 and 1.40, respectively.  Organelle refractive indices ranged from 1.38 to 1.42, and 
organelle sizes ranged from 100 nm to 1 µm.  Approximately 25% of the available space 
within the cell (space not already occupied by the nucleus) was filled with organelles.  
Wavelengths spanned from 600 nm to 1000 nm with a 5 nm increment. 

 

 

 
Fig 3.  Four models of cellular scattering:  (1) nucleus only, (2) cytoplasm only, (3) nucleus and 
cytoplasm, and (4) nucleus and cytoplasm containing organelles.  The color scale corresponds 
to the log of the scattered intensity. 

 
Results are shown in Figure 3.  All of the homogeneous cell models produced scattering 

diagrams with clear interference peaks.  Differences in the spacing of the peaks based on the 
size of the scatterers are clearly seen.  Spreading of the peaks as the scatterer size relative to 
the wavelength increases is evident.  Although at quick glance the four data sets may appear 
similar, the details of each case are quite different.  It is particularly interesting to note how 
the introduction of heterogeneities in the form of small organelles impacts scattering.  The 
addition of cytoplasmic organelles begins to obscure the interference peaks clearly visible in 
the simulations using homogeneous geometries.  The effects of the heterogeneities are most 
noticeable at angles over ninety degrees, partially because the scattered intensity values in this 

1 2 3 41 2 3 44
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region are five to six orders of magnitude smaller than the scattered intensity values at low 
angles.  The trends in high angle scattered intensity as a function of wavelength using the 
different cellular models are also significant, demonstrating that the wavelengths and scatterer 
sizes relevant to optical diagnostics often lie in a scattering regime in which high angle scatter 
is particularly sensitive to scatterer size.  These types of observations underscore the necessity 
of careful consideration of which portions of a cell are responsible for observed scattering 
before choosing a simple geometric model and then using the model to create theoretical 
scattering curves to be fit to experimental data.  

3.3 Heterogeneous Cell Geometries:  Normal versus Pre-cancerous Cells 

To consider how more complicated descriptions of cellular morphology influence light 
scattering properties, two cells containing multiple sizes and shapes of organelles and 
heterogeneous nuclei were considered.  In the first cell, the morphology was defined using 
histological features of normal cervical cells; in the second cell, the morphology was defined 
based on the features of cervical cells staged as high grade dysplasia [24-26].  In order to 
emphasize differences due to the internal contents of the two cells rather than the overall cell 
size and shape, both cells were the same size (9 µm diameter) and circular in shape.  The most 
significant differences between the dysplastic cell relative to the normal cell included 
increased nuclear size and nuclear-to-cytoplasmic ratio (normal 0.2, dysplastic 0.67), 
asymmetrical nuclear shape, increased DNA content, and hyperchromatic nucleus with areas 
of coarse chromatin clumping and clearing.  In the normal cell, nuclear index variations were 
uniformly distributed between ∆n=±0.02 about the mean nuclear index, n=1.40, at spatial 
frequencies ranging from 10-30 µm-1 providing a fine, heterogeneous chromatin structure.  In 
the dysplastic cell, nuclear index variations were distributed between ∆n=±0.04 about the 
mean nuclear index, n=1.42, at spatial frequencies ranging from 3-30 µm-1 providing a 
coarser, more heterogeneous chromatin structure.  Both normal and dysplastic cells contained 
several hundred organelles (radii ranging from 50 nm to 0.5 µm; n=1.38 to 1.40) randomly 
distributed throughout the cytoplasm.  Wavelengths spanned from 600 nm to 1000 nm with a 
5 nm increment.  

Results are shown in Figure 4.  Elevated scattering is evident in the dysplastic cell.  The 
increased scattering at small angles is due to the larger nucleus.  The increased scattering at 
higher angles is due to alterations in chromatin structure, resulting in increased heterogeneity 
of refractive index variations.  Since the dysplastic cell contains a large heterogeneous nucleus 
containing an assortment of scatterer sizes and refractive indexes, distinct interference peaks 
are not present.  In the normal cell, although heterogeneities are present in the cellular 
structure, they are not significant enough to disrupt the peaks resulting from the cytoplasm 
and nuclear boundaries.   

The bottom half of Figure 4 displays the integrated scattered intensity as a function of 
wavelength for three angular regions:  0-20°, 80-100°, and 160-180°.  The curves show that 
the integrated intensity is a function of both angle and cellular structure.  In this simulation, 
changes in the wavelength dependence of the scattering between the normal and dysplastic 
cell are particularly evident at high angles.  To develop optimized optical techniques which 
can discriminate between normal and dysplastic tissue based on differences in the wavelength 
dependence of cellular scattering, it is important to investigate which angular regions offer the 
highest potential for differential diagnosis.  Then optical probes with delivery and collection 
geometries designed to preferentially sample particular angular ranges can be developed. 
 

4.  Discussion and Conclusions 
 

The scattering properties of cells modeled using homogeneous and heterogeneous descriptions 
of morphology are clearly, and markedly, different.  However, the goal of this work is not to 
suggest that either a homogeneous or heterogeneous model of a biological cell is more 
advantageous than the other, but rather to offer a novel approach that can be applied in an 

(C) 2000 OSA 27 March 2000 / Vol. 6,  No. 7 / OPTICS EXPRESS  154
#19538 - $15.00 US Received February 09, 2000; Revised March 21, 2000



equally straightforward manner regardless of the proposed geometry.  Using such an 
approach, it is possible to consider those representations of cells which experimental evidence 
suggests are most sensible, rather than imposing artificial limits on potential geometries based 
on the availability of simple analytical solutions.     

Fig 4.  Top:   Scattering from normal  (left) and dysplastic (right) cervical cell.   Note elevated 
scattering in dysplastic cell.   The increased scattering at small angles is due to a larger nucleus 
to cytoplasm ratio.   The increased scattering at high angles is due to alterations in chromatin 
structure, resulting in increased heterogeneity in nuclear refractive index.  The color scale 
corresponds to the log of the scattered intensity.   Bottom:  Integrated scattered intensities over 
three angular ranges (0-20°, 80-100°, and 160-180°) for normal (left) and dysplastic (right) 
cervical cells 

 
Although the FDTD method offers tremendous flexibility and is widely employed for 

electromagnetic modeling applications in areas such as antenna design, microelectronics, and 
the defense industry [14], it has not found extensive use in the field of biomedical optics.  
Perhaps this is partly due to the computational requirements of the method which until the 
past several years limited simulations of biological cells at optical frequencies to large 
supercomputers.   Today the same problems can be solved in both two and three dimensions 
on desktop computers.  The FORTRAN program used for the simulations described in this 
paper requires approximately two minutes for a two-dimensional solution and ninety minutes 
for a three-dimensional solution using a 500 MHz workstation.  Using double precision 
variables, memory requirements for a 10 µm cell are approximately 1 Mb in two dimensions 
and 60 Mb in three dimensions. 

Until the last few years, an additional limitation of FDTD calculations was the lack of 
sufficient boundary conditions to adequately suppress reflections of outgoing waves at grid 
boundaries.  Imperfect boundary conditions, in certain cases, can limit the accuracy of results 
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at scattering angles approaching 180 degrees.  However, boundary conditions have improved 
dramatically over the past five years.  The newest boundary conditions, all variants of the 
perfectly matched layer (PML) solution developed by Berenger [16], have almost totally 
eliminated the occurrence of incompletely terminated outgoing waves.  The new boundary 
conditions are based on surrounding the FDTD problem space by a "perfectly matched" 
absorbing material which perfectly transmits waves of all polarizations, all frequencies, and 
all angles of incidence [27].  The combination of significant improvements in absorbing 
boundary conditions coupled with increased available computational speed and memory 
makes the FDTD technique more practical than ever before. 

In previous work, we demonstrated that the choice of cell geometry has a profound 
impact on scattering at a particular frequency [19].  In particular, when the cell is treated as a 
structure containing a continuum of refractive index fluctuations rather than a structure 
composed of several homogeneous elements, the obtained scattering data are strikingly 
altered.   Although the potential to use FDTD as an alternative to Mie theory has existed for 
several years, without a method to efficiently perform FDTD computations at a large number 
of frequencies, it was not realistic to extend the use of FDTD to the problem of extracting 
morphologic parameters from reflectance data.  By incorporating pulse response techniques 
into the FDTD algorithm, the code can be used to perform the types of calculations required in 
the process of inverting reflectance data as described in [5, 7-9].   

Because it is possible to obtain such varied pictures of cellular scattering based on the 
assumptions regarding cell geometry, it is crucial to pursue the fundamental experimental 
work necessary to elucidate the sub-cellular sources of scattering in tissue.  Can epithelial 
tissue really be treated as a collection of spheres in which all scatters except for the nucleus 
are neglected, or do the cell membranes and other organelles in between significantly matter?  
Typically, when observing images of tissue, one views histological micrographs in which the 
visibility of the nuclei is artificially enhanced by exposing the nuclei to absorbing stains.  
Observing the same tissue using a reflectance confocal microscope or other scattering-based 
imaging method, the picture obtained can be much more complicated.  Depending on the type 
of the cell, the nucleus may or may not be a significant scatterer.  Even if the nucleus is the 
dominant scatterer, is it the nucleus taken as a homogeneous entity or is it the size and 
refractive index of the chromatin particles within it that are really dictating the observed 
scattering properties?  Although computational studies can provide results given a particular 
set of simulations parameters, only experimental work can determine what the truly 
significant scatterers are for a particular tissue and how the scatterers change during the 
course of disease progression.  As further experimental work is conducted to provide a clearer 
understanding of cellular scattering, it will become increasingly feasible to use methods such 
as pulsed FDTD to perform the calculations necessary to accurately extract morphologic data 
from tissue spectra. 

It is important to emphasize that the results presented in this paper were obtained using a 
two-dimensional FDTD model.  Implementing the pulse response techniques in a two-
dimensional model is a much simpler problem than the three-dimensional case.  Given the 
high level of interest throughout the past year in developing methods to extract morphological 
parameters from reflectance data, we believe it important to point out the potential benefits 
afforded by pulsed FDTD approach in a timely fashion.   In future work, the technique will be 
extended to the three-dimensional case.  Two-dimensional FDTD modeling of cells has been 
explored previously and work comparing 2D and 3D solutions of the problem indicated 
qualitatively similar trends [28].  The influence of parameters such as increasing nuclear to 
cytoplasmic ratio and adding different sizes and shapes of organelles produced similar results 
in the two and three dimensional cases.  To incorporate absolute scattered intensities into a 
model which would ultimately be applied to the analysis of measured reflectance data, a three-
dimensional pulsed FDTD approach should be used.  A three-dimensional implementation of 
pulsed FDTD offers a new approach to modeling cellular scattering for applications which 
attempt to assess morphology via reflectance measurements.  Pulsed FDTD has other potential 
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applications as well such as generating improved phase functions for Monte Carlo simulations 
or developing novel analysis methods for flow cytometry. 
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