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Efficient computation of time-resolved
transfer functions for imaging in turbid media
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The transfer function of a turbid medium such as biological tissue provides a method of analyzing the spatial
resolution of a time-resolved tissue imaging system. A method is presented of calculating the transfer
function with the use of a Monte Carlo simulation. The model allows the computation of the time-resolved
line-spread function of a sample of thickness d from a simulation of thickness dy2 by use of reciprocity under
certain conditions, and the transfer function can then be computed from the line-spread function. Results
with this method agree with previously published theoretical and experimental results.  1996 Optical
Society of America
1. INTRODUCTION
Imaging of objects embedded in tissue at optical fre-
quencies is possible because objects such as tumors have
different optical properties from those of the surround-
ing tissue.1 Optical imaging is limited, however, by
the highly scattering nature of tissue in the visible and
near-infrared region of the spectrum. As a light beam
propagates through tissue, it will broaden as a result
of scattering and decay as a result of absorption. The
strong scattering in tissue leads to a wide range of paths
traveled by the photons, and time-resolved transillumi-
nation imaging methods use the time of flight as an
indication of path length to yield information about the
presence of hidden objects such as tumors.2 – 4 Without
time-of-flight information the spatial resolution of the
image will be low.

In time-resolved transillumination imaging a short-
pulse laser is incident normally on the tissue, with the de-
tector located behind the tissue, collinear with the source.
The laser and the detector are scanned together in the
transverse (x and y) directions, and a two-dimensional im-
age is formed. If a tumor is present between the source
and the detector, there is a different number of transmit-
ted photons at the positions below the tumor, since it has
different optical properties from those of the surrounding
tissue. In a clear medium the loss of signal would be
determined entirely by the absorption coefficients along
a straight line through the sample. If the tumor has
a higher absorption coefficient than that of the ambient
tissue and thus a lower transmission T ­ exps2madd, it
will cast a dark shadow. In a scattering medium this
technique is limited by the detection of photons scattered
around the tumor.5

To obtain the best image, one must distinguish between
those photons that are scattered around an object and
those that take a direct path to the detector. Because
the highly scattered photons must travel farther to go
around an object, they will arrive at the detector later
than the photons with more direct paths. Therefore, if
a time gate is set on the detector, only the photons that
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have deviated least from the optical axis can be selectively
detected, which improves the resolution of the image.1,6,7

For extremely short times there will be few photons
detected, but the image resolution will be greater. For
longer times the number of photons will be greater, but
the resolution will be lower. Therefore the integration
time will vary, depending on the required resolution.

The spatial resolution of an imaging system is com-
monly characterized by its modulation transfer function
(MTF), which is the modulus of the Fourier transform of
the point spread function (PSF). Therefore one can de-
termine the spatial resolution by first calculating the PSF
of the system.

The MTF curve at each integration time has a slightly
different shape, with its amplitude determined by the
number of transmitted photons. Traditionally each MTF
curve is normalized to its value at zero frequency, but
in this paper the MTF will not be normalized since its
amplitude will represent the strength of the signal at the
detector. For any given spatial frequency the optimum
time gate will be that time for which the MTF is largest.
The peak amplitude for all spatial frequencies will define
an envelope that represents the resolution limit for the
tissue. Associated with each setting of the time gate is
a particular PSF and therefore a MTF. For short time
gates the PSF and the MTF have low amplitudes because
fewer photons are detected. The PSF is narrow, and
therefore the MTF is wide. For larger time gates more
photons will be detected, which increases the amplitudes
of the PSF and the MTF, but the PSF will be wider and
the MTF will be narrower. The Fourier transform of the
best image is obtained by the application of an appropriate
deconvolution to the data with the highest MTF at each
point in the transform.

2. POINT-SPREAD-FUNCTION
COMPUTATION: PRODUCT-OF-
PROBABILITIES METHOD
The PSF of an optical system is a measure of the degree
to which light is spread out. An image can be formed
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through a convolution of the PSF with the transmission
function of the system. In the case of transillumination
imaging the PSF is a measure of the photon distribution
on the central plane z ­ dy2. For highly scattering tis-
sue the photons will be more widely distributed. The
PSF is proportional to the probability of a photon trav-
eling from its initial position at the origin (0, 0, 0), to
any point sx, y, dy2d on the central plane z ­ dy2, multi-
plied by the probability of travel from the central plane,
sx, y, dy2d, to the detector located at point (0, 0, d). The
two-dimensional distribution of probabilities for all points
sx, y, dy2d is the PSF. Computation of the PSF in this
way requires that the probabilities for both the upper
half s0 # z # dy2d and the lower half sdy2 # z # dd be
calculated.

Monte Carlo simulations for realistic tissue thicknesses
require a large number of photon paths to be traced for ac-
curate data, which results in large computation times. If
the probability for the lower half of the tissue is rewritten
in terms of an equivalent probability expressed in terms of
the upper half, the PSF can be computed from the results
of a simulation of half of the desired thickness. Because
the ratio of the number of photons into the number of
photons out is exponential in thickness, the time saving
is significant.

To show that this is a valid approach, let the
six-element vector q ­ sx, y, z, mx, my , mzd represent
the position sx, y, zd and the direction of propagation
smx, my , mzd of a photon, where mx, my , and mz are the
directional cosines of the photon. If q0 ­ sx0, y0, z0,
mx0, my0, mz0d is another point and direction, then
P sq j q0d is the probability of travel from q0 to q. Four
vectors q0, q1A, q1B , q2 are defined as

q0 ­ s0, 0, 0, 0, 0, 1d ,

q1A ­ sx, y, dy2, mx, my , mzd ,

q1B ­ sx, y, dy2, 2mx, 2my , mzd ,

q2 ­ s0, 0, d, 0, 0, 1d . (1)

These four vectors are represented graphically in Fig. 1,
where the tissue has been split into two halves along
the central plane. The total probability of traveling from
the origin to the detector at (0, 0, d) through any point
sx, y, dy2d on the central plane is

P sq2 j q0d ­
Z

P sq1A j q0dP sq2 j q1Addq1A . (2)

This represents the probability of traveling from the ori-
gin to any point on the plane z ­ dy2 in any direction and
then to the detector at (0, 0, d), integrated over all inter-
mediate points. In order to find P sq2 j q0d with a sample
of thickness dy2, we must determine information about
the second half, P sq1A j q2d, from the data of the first half.
If the direction of propagation of a photon in the second
half is reversed under the assumption that the photon
starts at (0, 0, d), the signs of the directional cosines mx

and my must be reversed and

P sq2 j q1Ad ­ P sq1B j q2d . (3)

In Fig. 1 the vector q1B is shown on both the upper and
lower halves of the tissue, which demonstrates that if we
flip the lower half to match the upper half, the probability
for the second half can be written in terms of a probability
in the top half as

P sq1B j q2d ­ P sq1B j q0d (4)

and Eq. (2) can be written in terms of probabilities from
the upper half,

P sq2 j q0d ­
Z

P sq1A j q0dP sq1B j q0ddq , (5)

where dq represents the integral over x, y, mx, and my .
Equation (5) gives the probability for all photon paths

from the source to the detector through all points
sx, y, dy2d in all directions smx, my , mzd. To find the
two-dimensional PSF, we integrate over mx and my :

P sq2 j q0d ­
Z 1

21

Z 1

21
P sq1A j q0dP sq1B j q0ddmxdmy . (6)

This will give the two-dimensional time-independent
PSF. We find the time-resolved PSF by incorporating
the time of flight for each photon into the probability such
that P sqb, t2 j qa, t1d represents the probability of starting
at position and direction qa at time t1 and being a position
and direction qb at time t2, assuming that t2 . t1. The
time-resolved PSF is all combinations of t1 and t2 such
that

t2 1 t1 # t , (7)

where t is the total allowed travel time through the full
sample of thickness d. Equation (6) becomes

P sq2, t j q0, 0d ­
Z 1

21

Z 1

21

Z t

0

Z t2t1

0
P sq1A, t1 j q0, 0d

3 P sq1B , t2 j q0, 0ddt2dt1dmxdmy . (8)

3. MONTE CARLO SIMULATION
The PSF was computed from the results of a Monte Carlo
simulation. The basis for the Monte Carlo simulation

Fig. 1. Geometry for the product-of-probabilities method. The
vectors q1A, q1B , and q2 each represent a point and a direction
of a photon. The tissue is split along the plane z ­ dy2.
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was the program written by Wang and Jacques, MCML

(Monte Carlo Multi-Layer Tissue).8 The code was modi-
fied as part of the present work to compute the time of
flight for each photon packet and record the transmission
as a function of radius, exit angle, and time. In each
simulation individual photons are traced through the time
until they are either transmitted or reflected out of the tis-
sue or are completely absorbed. As each photon reaches
the lower surface, z ­ dy2, the transmission is recorded
in a three-dimensional array in cylindrical coordinates,
T sr, b, td, where r refers to the radial distance from the
optical axis, b refers to the modified direction of travel,
and t refers to the time. The simulation was performed
on a sample of thickness dy2, so that when a photon is re-
ferred to as exiting the tissue, it is meant that the photon
is exiting the top half of the tissue sample. Cylindrical
symmetry is assumed for the PSF, so a photon exiting at
sx, y, dy2d is counted in a bin defined by r ­

p
x2 1 y2.

Assuming cylindrical symmetry requires that

P sq1A j q0d ­ P sq0
1A j q0d , (9)

provided that q0
1A ­ Rusq1Ad, where Ru is the rotation

operator,

Ru ­

26666666664

cos u sin u 0 0 0 0
2sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u sin u 0
0 0 0 2sin u cos u 0
0 0 0 0 0 1

37777777775
. (10)

In order to define the angle of each photon exiting the
tissue as a meaningful one-dimensional parameter, we
define rxy as the location of the photon on the x–y plane
at the bottom surface of the tissue sz ­ dy2d and s as the
direction of photon propagation just prior to exiting the
tissue. rxy and s are defined as

rxy ­ xx̂ 1 yŷ , s ­ mxx̂ 1 my ŷ 1 mzẑ . (11)

The exit angle is characterized by the cosine of the angle
between rxy and s, b:

b ­
rxy ? s
jrxy ? sj

­

√
xx̂ 1 yŷp
x2 1 y2

!
? smxx̂ 1 my ŷ 1 mzẑd

­
xmx 1 ymyp

x2 1 y2
. (12)

The range of b is 21 to 1, and this is represented
graphically in Fig. 2. The bottom view [Fig. 2(a)] shows
the different values of b for a photon exiting at rxy on
the x–y plane at z ­ dy2. b is equal to zero when rxy

and s are perpendicular, and b ­ 1 when they are in the
same direction. The three-dimensional view in Fig. 2(b)
illustrates how s defines a sphere and the sphere is then
divided into strips determining the values of b.

To compute the time-resolved line-spread function
(LSF), we convert Eq. (8) to a summation. We combine
the integration over x and y into a single summation by
matching the transmission probabilities of the two halves
according to the angle parameter. The angles are paired
as follows:
b ­ 21 $ b ­ 11 ,

b ­ 21 1 Db $ b ­ 11 2 Db ,

... $
...

b ­ 0 $ b ­ 0 ,

... $
...

b ­ 11 2 Db $ b ­ 21 1 Db ,

b ­ 11 $ b ­ 21 . (13)

In terms of the indices on b, this pairing means match-
ing each bi with Nb 2 bi, where Nb is the total number
of divisions of b. The sum then becomes

P sq2, t j q0, 0d

­
NbX

bi­1

NtX
tn­1

Nt2tnX
tm­1

T sri, bi, tndT sri, Nb 2 bi, tmd , (14)

where Nt is the total allowed time gate and T sr, b, td
represents the transmission at location r, direction b, and
time t. This summation yields the time-resolved LSF on
the plane z ­ dy2 for photons entering at the origin (0, 0,
0) and exiting directly below the entrance point (0, 0, d).
The summation in Eq. (14) was computed in a separate
program that was written to compute the time-resolved
LSF at different times from the output of the Monte Carlo
simulation.

Equation (14) provides a method of computing the PSF
for a sample of thickness d with the use of results from
a simulation of thickness dy2. It accounts for all pho-
ton paths through the tissue except for those that cross

Fig. 2. Graphical representation of the characterization of the
photon exit direction. (a) Bottom view. The arrows represent
different directions s, and the corresponding values for b are in-
dicated for a particular rxy . (b) Three-dimensional view. The
values for b are distributed into strips ranging from 21 to 1.
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Fig. 3. Time-resolved LSF for a thickness of 1 cm. The
optical properties used in the simulation are ss ­ 100 cm–1,
sa ­ 0.5 cm–1, and g ­ 0.97.

Fig. 4. Time-resolved LSF for a thickness of 2 cm. The optical
properties are the same as those in Fig. 3.

the midplane of the tissue z ­ dy2 multiple times. This
limits the applicability of this method to those geometries
in which the number of photons crossing the midplane
more than once is small compared with the total number
of detected photons.

4. RESULTS
To illustrate the approach, we ran the Monte Carlo simu-
lation and computed LSF and MTF curves for different
time gates. Figure 3 shows the LSF at different times
for a sample 1 cm thick. The absorption coefficient sa,
the scattering coefficient ss, and the anisotropy g were
chosen to be representative of human breast tissue,9 – 11

and the interface between the bottom surface of the tissue
and the exiting medium was assumed to be index matched
to prevent any Fresnel reflections, since the two halves
of the tissue are split only for the purpose of the simu-
lation. To obtain the plot in Fig. 3, we ran the Monte
Carlo simulation on a sample 0.5 cm thick, and the LSF
for the 1-cm sample was calculated with the product-of-
probabilities method. The plot shows that as the time
gate is increased, the amplitude of the LSF increases, but
it also spreads out since the photons have traveled longer
paths to the detector. This is demonstrated by the full
width at half-maximum values (FWHM), which are 0.1,
0.2, 0.24, and 0.26 cm for the time gates.

Figure 4 contains plots of the LSF for a sample 2 cm
thick with the same optical properties as those of the
sample in Fig. 3. The LSF is more spread out than it was
for the thinner sample and has an amplitude 2 orders of
magnitude lower, on account of the increased thickness.
In addition, the time gate necessary for the first photons
to arrive is considerably longer in the thicker sample.

Since the sample in Fig. 3 is thin, a few photons arrive
at the detector at t ­ 45 ps, close to the unscattered
photon flight time. The amplitude of the LSF at this

Table 1. Percentages of Photons
Crossing the Midplane More Than Oncea

Depth d (cm) N . 1 N ­ 1

1 5.66% 94.34%
2 13.0% 87.0%
4 45.1% 54.9%

aN indicates the number of times each photon crosses the plane z ­ dy2.

Fig. 5. Time-resolved MTF for the 1-cm case.

Fig. 6. Time-resolved MTF for the 2-cm case.



A. Dunn and C. DiMarzio Vol. 13, No. 1 /January 1996 /J. Opt. Soc. Am. A 69
Fig. 7. Spatial frequency versus detector time gate for the 1-cm
case.

Fig. 8. Spatial frequency versus detector time gate for the 2-cm
case.

time is a factor of 10 lower than that of the longer times
and is considerably narrower.

For each of the above cases the Monte Carlo simula-
tion was run on samples of thickness dy2. This method
excludes those photons that would cross the central plane
z ­ dy2 multiple times. To verify the validity of the
model and the limitations that the exclusion of these
photons imposes, we used the Monte Carlo simulation to
determine the percentage of photons that cross the central
plane more than once in traveling through a sample of
thickness d. As photons propagated through the tissue,
the number of times that each photon crossed the mid-
plane was counted. For those photons reaching the
bottom surface and exiting the tissue in a circle of radius
less than 1 mm, the percentage crossing the midplane
multiple times was calculated.

Table 1 shows the percentage of photons crossing once
and the percentage crossing more than once for several
thicknesses. The optical properties used were the same
as those of the other simulations (ss ­ 100 cm–1, sa ­
0.5 cm–1, g ­ 0.97). As the thickness increases, the frac-
tion of detected photons having crossed the midplane more
than once increases. Therefore the method of splitting
the tissue along the central plane is valid, provided that
the fraction crossing only once is large compared with the
fraction crossing multiple times.
With the tissue geometries used in the calculation of the
LSF 94% and 87% of all the photons were accounted for.
At a depth of 4 cm, however, the percentage of photons
with multiple crossings is 45%. This suggests an upper
limit of approximately 200 optical depths for this model,
where 1 optical depth is the reciprocal of the attenuation
coefficient, 1ysss 1 sad.

The MTF curves for each sample were calculated from
the LSF data. The plots in Figs. 5 and 6 show that as
the integration time decreases, the amplitude of the MTF
decreases but also decays more gradually. For any given
spatial frequency we determine the optimal time gate by
selecting the time gate with the largest amplitude at that
spatial frequency. For example, if the desired spatial
resolution is less than 2 cm–1 for the 1-cm sample (Fig. 5),
the optimum time gate would be 65 ps. However, if
greater resolution is required, a shorter time would yield
the resolution and would provide the strongest signal.
The MTF of the thin 1-cm sample demonstrates that a
shorter integration time yields a broader MTF, and as
the unscattered photon time is approached, the MTF will
be flat.

To assess the spatial resolution as a function of inte-
gration time, we calculated the spatial frequency at which
the MTF curve has a value of 0.1 of its maximum. The
results, shown in Figs. 7 and 8, indicate that the spa-
tial resolution increases sharply with a decreasing time
gate. As expected, the resolution is greatest for the
1-cm sample. The plots indicate that subcentimeter
resolution is possible for samples 2 cm thick and sub-
millimeter resolution is attainable for 1-cm samples, in
agreement with previous results.12,13 Achievement of
this resolution, however, depends on extremely short de-
tection times and is possible only when the fraction of
detected photons is above the noise threshold.

Previous results based on Monte Carlo simulations per-
formed by DeHaller and Depeursinge14 have indicated a
minimum resolution of 3 mm for a 2-cm-thick sample of
breast tissue. The resolution obtained with the current
method agrees with this result, as demonstrated in Fig. 8,
where the spatial resolution, based on the MTF, is ap-
proximately 2 cm–1 or, based on the FWHM of the PSF,
is approximately 3.8 mm. The Monte Carlo results in
Ref. 14 were verified with experimental data, indicating
resolutions ranging from 3 to 10 mm, depending on the
time gate, for a 2-cm-thick sample.15

Chen4 determined resolutions comparable with the cur-
rent results for 1-cm-thick samples. The 1–2-mm reso-
lutions are close to those indicated in Fig. 7 obtained with
the product-of-probabilities method.

5. CONCLUSIONS
A technique for calculating the spatial resolution of a
time-resolved imaging system has been presented with
the use of Monte Carlo simulations. When the sample is
less than 200 optical depths in thickness, one can compute
the tissue transfer function with a Monte Carlo simula-
tion of a sample of half the desired thickness, provided
that the position, the time, and the exit angle of the trans-
mitted photons are known, by matching the two halves.
The final result is then all combinations of photons whose
travel times add up to less than the detector time gate.
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