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Transport-based image reconstruction in turbid media with
small source–detector separations
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We demonstrate a new method for imaging through several millimeters of a turbid sample with a resolution of
approximately 100 mm by combining aspects of confocal ref lectance microscopy and diffuse optical tomography.
By laterally displacing the pinhole aperture of a confocal microscope we can achieve small source–detector
separations and detect minimally scattered light. A reconstruction algorithm based on the first Born ap-
proximation to the radiative transport equation is then used to reconstruct an image of a 100-mm absorbing
object located 2 mm beneath the surface. © 2000 Optical Society of America

OCIS codes: 170.3010, 170.1790, 170.0180, 170.3660.
Noninvasive optical imaging in turbid samples such
as biological tissues has been investigated exten-
sively on both microscopic and diffuse spatial scales.
Microscopic methods such as confocal ref lectance1

and multiphoton f luorescence microscopy2 provide
depth-resolved, micrometer-resolution images of tissue
structure and function but are limited to depths
of less than several hundred micrometers. Optical
coherence tomography3 can penetrate to greater
depths ��1 mm� but at the expense of lower spatial
resolution �5 20 mm�. The limitations on the pene-
tration depths of these microscopic methods arise from
the fact that each relies on the detection of single-
scattered light, and since tissues are highly scat-
tering, the probability of detecting single-scattered
light through several hundred micrometers becomes
prohibitively small.

Imaging with diffuse light, however, typically yields
spatial resolution of the order of several millimeters to
a centimeter, with penetration depths of several cen-
timeters. Since the detected light has been scattered
many times, an image-reconstruction algorithm must
be employed to reconstruct scattering and absorption
perturbations. Various reconstruction strategies
have been used,4 and most are based on the diffusion
approximation to the Boltzmann transport equation.

The spatial regime lying between that covered by
the microscopic and the diffuse techniques remains
largely unexplored, however. This is in part due to
the complexity of the description of light interaction
with tissue on a spatial scale of only a few scattering
lengths. A few groups have attempted to exam-
ine this regime,5,6 but those studies have involved
nonimaging approaches primarily intended for extrac-
tion of optical properties. A new imaging modality
with the ability to penetrate depths greater than those
attainable by microscopic methods with resolution
significantly greater than the diffuse methods can
be accomplished by combination of certain aspects
of the microscopic and the diffuse methods. Such
a technique could be widely used in a number of
biomedical applications, such as functional imaging of
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the cerebral cortex through an intact skull in small
animals and endoscopic imaging of small lesions too
deep for conventional microscopic techniques to image
and too small for diffuse methods to resolve.

Figure 1 illustrates the geometry used to image in
the regime in which light is multiply scattered but not
yet diffuse. By translation of the pinhole and detec-
tor that are typically used in confocal ref lectance mea-
surements to a position that is laterally displaced from
the optical axis, the pinhole is imaged to a point that
is laterally displaced from the source. Therefore the
amount of lateral displacement of the detector aper-
ture determines the effective source–detector separa-
tion. Because the source is no longer imaged onto the
detector aperture, the detected light has been scattered
two or more times.

As the source–detector separation increases, the de-
tected light will have probed a deeper and larger region
of the sample. The sensitivity of the measurement to
a particular region of the sample can be maximized
by variation of several parameters in the geometry of
Fig. 1. These parameters include the source–detector
separation (aperture offset), numerical aperture, depth
of focus into the medium, wavelength, and pinhole di-
ameter. In general, the size of the pinhole aperture
will be larger than that used in confocal ref lectance
measurements, since it will be more important to maxi-
mize the signal intensity than to provide a large degree
of spatial f iltering.

Fig. 1. Geometry for imaging at small source–detector
separations.
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Direct imaging of single-scattered light by use of
the geometry of Fig. 1 is not feasible. Therefore, to
form an image, one must solve an inverse problem as
in the diffuse regime. Since the diffusion approxima-
tion is no longer valid owing to the close proximity of
the source and the detector, a description based on the
transport equation7 must be employed.

To reconstruct an image of an absorption perturba-
tion with a source–detector separation of only a few
scattering lengths, we use a linear reconstruction al-
gorithm based on the first Born approximation to the
radiative transport equation. In the first Born ap-
proximation, the absorption and scattering coefficients
are written as a sum of a homogeneous background
component and a spatially varying perturbation,
ma�r� � ma

o 1 dma�r� and ms�r� � ms
o 1 dms�r�. The

radiance, L, is then expressed as the sum of a back-
ground and a perturbed component, L � L0 1 L1. For
an absorption perturbation the zeroth- and first-order
terms, L0 and L1, are given by

L0�rd, V̂d� �
ZZ

S�r, V̂�G�r, V̂ j rd, V̂d�dV̂d3r , (1)

L1�rd, V̂d� � 2
ZZ

dma�r�L0�rs, r, V̂�

3 G�r, V̂ jrd, V̂d�dV̂d3r , (2)

where G�r, V̂ jrd, V̂d� is the Green function solution
for the transport equation for a particular detector
configuration. We note that perturbations in the
scattering coefficient and the phase function can be
computed with the same approach. Equation (2)
illustrates that one of the primary differences between
this approach and one based on the diffusion approxi-
mation lies in the angular dependence of the radiance.
In this Letter we consider only reconstruction by an
absorbing object by use of Eq. (2) and note that one can
follow the same procedure to reconstruct a scattering
perturbation.

To reconstruct an image of dma�r� from Eq. (2), we
compute L0 and G for a homogeneous background of
known optical properties, using a Monte Carlo simu-
lation in a focused beam geometry.8 We compute the
Green function, G�r, V̂ j rd, V̂d�, by simulating the
propagation of light from the detector to the medium
and then utilizing reciprocity to determine the fraction
of light reaching the detector from direction V̂ at point
r in the medium. Once the background radiance
and the Green function have been computed for all
source–detector pairs, an image of dma�r� is recon-
structed by use of the measured values, L1, which are
obtained for simulated data in this Letter.

Before Eq. (2) is used to reconstruct an image, the
validity of the f irst Born approximation for the trans-
port equation must be established. To test its validity,
we compared the perturbed signal computed by use of
Eq. (2) with the perturbed signal computed by use of a
perturbative Monte Carlo simulation of an absorbing
object embedded in a homogeneous background.9 The
absorbing object used in the comparison was a cubic
object with dimensions of 100 mm located at a depth of
1 mm beneath the surface. The optical properties of
the background and perturbation were ms � 10 mm21,
ma � 0.001 mm21, g � 0.9, and dma � 0.1 mm21. The
perturbed signals computed with Eq. (2) and with the
full perturbative Monte Carlo model as the absorbing
object was laterally translated through the sample are
plotted in Fig. 2 for source–detector separations of
500 mm and 2 mm. The amplitudes of the perturbed
signals in Fig. 2 have not been normalized, and they
demonstrate that the absolute amplitudes of the
perturbed signals are accurately predicted with the
linear perturbation model. The comparison illus-
trates that the f irst Born approximation accurately
predicts the perturbed signal and that Eq. (2) can be
used to reconstruct an image of dma�r�. Since the
first Born approximation is a linear approximation,
the magnitude of the perturbed signal is directly
proportional to the magnitude of dma. We have found
that the linear approximation begins to deviate from
the value predicted by the full perturbative Monte
Carlo at dma � 1.5 mm21 for a 100-mm object located
at a depth of 1 mm. In general, the value at which the
linear approximation breaks down will vary depending
on the size and depth of the perturbation. We have
found that the maximum value of dma increases as
the depth of the object increases and decreases as
the physical size of the perturbation increases, in
agreement with standard perturbation theory.

Once the validity of the first Born approximation has
been established (Fig. 2), we can construct an image of
dma�r� by writing Eq. (2) as a matrix equation of the
form y � Ax, where y is the set of measurements and
x � dma�r�. Truncated singular-value decomposition
was used to invert this set of equations and find dma�r�
by use of simulated data.4

Reconstructed images of a 100-mm absorbing object
�dma � 1 mm21� at depths of 1 and 2 mm are shown in
Fig. 3. The background optical properties of the medi-
um were the same as those used in Fig. 2. The set of
measurements used in the simulated reconstruction

Fig. 2. Comparison of the perturbed signals computed
with the f irst Born approximation (solid curves) and with
a full perturbative Monte Carlo simulation (symbols)
at source–detector separations of 500 mm and 2 mm
for an object located 1 mm beneath the surface with
dma � 0.1 mm21.
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Fig. 3. Reconstructed images of a 100-mm absorb-
ing object located at depths of 1 mm (left) and 2 mm
(right) below the surface, obtained from simulated data
�dma � 0.1 mm21�.

consisted of source–detector separations ranging from
400 mm to 2 mm in 200-mm increments at numerical
apertures (NA’s) of 0.2 and 0.4, for a total of 18
source–detector pairs (9 with a source and detector
NA of 0.2 and 9 with an NA of 0.4). Each pair
was translated 1.25 mm across the surface of the
sample in 51 steps of 25 mm, yielding a total of 918
measurements. The focal point of the source and
detector was set to 1 mm beneath the surface for all
measurements. The singular-value spectrum was
truncated at 250, and this number was determined by
consideration of the 103 signal-to-noise ratio for our
simulation. The system was assumed to be shot
noise limited, and the number of singular values
was chosen so that the magnitude of the perturbed
signal was greater than the measurement noise in the
total detected signal �background 1 perturbation�.
The images in Fig. 3 clearly indicate that 100-mm
axial and lateral resolution is maintained to a depth
of 2 mm.

Based on the images of Fig. 3, it is clear that this
method is capable of imaging in the spatial regime ly-
ing between the microscopic and the diffuse regimes.
The ability to image through several millimeters of tis-
sue with a resolution of a few hundred micrometers by
use of this method should allow a new set of biomedi-
cal problems and applications to be addressed. For
example, it should be possible to image small blood ves-
sels located several millimeters within tissues, since
the size of the vessels is a few hundred micrometers,
and the difference in absorption between the blood ves-
sels and the surrounding tissue will be �1 mm21 in the
near infrared. Another potential use of this method
may be in optimizing the use of the indirect mode of
the scanning laser ophthalmoscope10 for imaging sub-
retinal structures, in which an annular aperture is
used in place of a confocal aperture so that multiply
scattered light is detected. Currently, the use of the
indirect mode is based on observation rather than a
theory or model based on light scattering in tissue.
The model presented in this Letter could be applied
to optimize the use of this mode.
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