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    Chapter 3   

 Optical Properties of Neural Tissue 

           Andrew     K.     Dunn    

    Abstract 

   The optical properties of neural tissues play critical roles in all types of optical imaging methods. The 
wavelength-dependent absorption and scattering properties of tissue infl uence imaging resolution, pene-
tration depth, and often provide sources of contrast. Therefore, quantitative interpretation of imaging data 
requires knowledge of the optical properties of neural tissues. Light scattering in tissue arises from 
nanometer- scale spatial variations in refractive index and requires a thorough electromagnetic description 
of light propagation through this complex medium. Unfortunately, the complexity of neural tissues and 
the diffi culty in measuring refractive index values make such a complete description unrealistic. Therefore, 
approximations must be made in order to characterize the light scattering properties of neural tissue. This 
chapter summarizes the various approaches to assess and describe the optical properties of neural tissue and 
discusses their role for cortical imaging.  

  Key words     Light scattering  ,   Light absorption  ,   Optical properties  ,   Monte Carlo  ,   Finite-difference 
time-domain  

1      Introduction 

 As described throughout this book, many optical techniques have 
been developed for imaging cortical structure and function. Each 
technique utilizes different sources of contrast and has different 
limitations in terms of spatial and temporal resolution, imaging 
depth, and sensitivity (see Chapter   2     in this volume). However, 
these techniques share a common feature: all are strongly depen-
dent on the optical properties of the cortex. In some cases the 
optical properties provide the source of contrast and therefore 
these imaging methods capitalize on spatial and/or temporal varia-
tions in cortical optical properties to provide functional informa-
tion. For other imaging methods, the optical properties impose 
limitations on the penetration depth or resolution of the tech-
nique. The most well-known example is the limited penetration 
depth of high-resolution imaging methods that arises from scatter-
ing in the cortex, which fortunately has been partially overcome by 
in vivo two-photon excited fl uorescence microscopy. 
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 Developing an improved understanding of the optical properties 
of neural tissue and their role in imaging of cortical function is neces-
sary for proper interpretation of imaging data. Such an understand-
ing is particularly important in applications such as multi- wavelength 
optical imaging of intrinsic signals (OIS) and diffuse optical tomog-
raphy where quantitative values for hemoglobin oxygenation and 
volume changes are sought. These measurements are combined with 
a solution to an inverse problem and this solution is a strong function 
of the tissue optical properties [ 1 ]. In addition, development of new 
microscopy methods or refi nement of existing techniques can be 
aided by a deeper understanding of optical properties. 

 This chapter reviews the physical origins of the optical proper-
ties of the cortex with a particular emphasis on light scattering. 
Some of the methods for modeling light interaction with tissue are 
described in the context of cortical imaging. Finally, several practi-
cal examples of the role of optical properties in cortical imaging are 
described.  

2    Origins of Optical Properties of Neural Tissues 

 The optical properties of tissue are usually characterized by the 
degree of light scattering and absorption, both of which arise from 
the complex physical and biochemical structure of tissue. 
Structurally, cortical tissue comprises different neuronal and glial 
cell types, vasculature, blood cells, and a complex distribution of 
intracellular and extracellular proteins. The densities of neuronal 
cells and vasculature vary with cortical layers, and as a result, the 
absorption and scattering properties of cortical tissue vary spatially 
as well as spectrally. This structural complexity makes it very chal-
lenging to defi ne specifi c scattering and absorption values for corti-
cal tissue. 

 Absorption of light in neural tissues is generally the result of 
molecular absorption. Although a vast number of molecules and 
proteins contribute to the overall absorption, a few are the domi-
nant absorbers in the visible and near-infrared spectrum. The 
strength of an individual chromophore is most commonly described 
by its molar extinction coeffi cient,  ε , which has units of M-1 cm-1. 
The dominant chromophores in neural tissue are oxy- and deoxy- 
hemoglobin, cytochrome-c-oxidase, water, NADH, and fl avopro-
teins. Each of these chromophores has a unique molar extinction 
spectrum (Fig.  1 ). The total tissue absorption is described by the 
absorption coeffi cient,  μ  a ( λ ) which has units of cm-1. The quantity 
 μ  a ( λ ) dl  represents the probability that a photon of a particular 
wavelength will be absorbed along a distance  dl . The absorption 
coeffi cient varies with wavelength and can be treated as a sum of 
the molar extinction coeffi cients of all individual chromophores 
weighted by their concentrations,
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where  C  i  is the concentration of a particular absorber. For wave-
lengths less than ~650 nm, oxy- and deoxy-hemoglobin are the 
dominant absorbers and this sum is usually truncated at two terms. 

 Although the absorption properties of neural tissues can be 
described as a linear combination of independent chromophores, 
the scattering properties of tissues are much more challenging to 
describe quantitatively. Scattering arises whenever light encounters a 
refractive index change. Therefore, the scattering properties of any 
tissue are determined by the wavelength of light and the spatial vari-
ations in refractive index. The spatial complexity of the refractive 
index of cortical tissue makes detailed descriptions of scattering 
extremely challenging. Neural tissue comprises many different cel-
lular and noncellular structures each of which has a slightly different 
refractive index and size. Furthermore, most of these structures con-
tain internal variations in refractive index that occur on the nanome-
ter spatial scale. An exact description of the scattering properties of 
any tissue requires detailed knowledge of the spatial distribution of 
refractive index at the nanometer level, which is not feasible. 

 Although many studies have attempted to characterize the 
index of cell components, there are no defi nitive values for each 
component due to the diffi culties inherent in these measurements, 
as well as the natural variations across cells and tissues. Table  1  
summarizes some of the previously published refractive index 

  Fig. 1    Optical properties of common tissue components. The wavelength- 
dependent extinction coeffi cient ε is plotted for common tissue chromophores 
( left axis ) and the scattering coeffi cient  µ  s  of neural tissue ( right axis ) is shown 
for four values measured from cortical tissue [ 2 ]. Note the different scales of the 
two axes.       
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 values for cellular components in general. Although many of these 
values are for non-neural tissues and cells, these values reveal that 
most organelles have refractive indices slightly above that of water.

   The refractive index of cellular and noncellular components is 
largely determined by the local protein concentration within the 
component. Any component can be considered as a protein solu-
tion and its index can be written as [ 12 ]

  n n C= +o a    ( 2 )    

where  n  o  is the refractive index of the solvent, which is approxi-
mately equal to water for cells, α is the specifi c refraction incre-
ment, and  C  is the concentration of the solute (g/100 ml). For 
protein,  α  = 0.0018, and for other solutes found in cells such as 
sodium,  α  = 0.0016 [ 11 ]. While the specifi c refraction increments 
are similar for proteins and other solutes, proteins play the largest 
role in determining the index of refraction because their concen-
trations in terms of weight per volume are considerably greater 
than other solutes [ 12 ]. 

 The net scattering properties that arise from these spatial varia-
tions in refractive index are generally characterized in two ways. 
The fi rst is the scattering cross section, which is a measure of the 
amount of light scattered by a single isolated tissue component 
such as a cell or organelle. The scattering cross section is related to 
the total amount of light scattered in all directions by a single 

    Table 1  
  Selected values of refractive index of tissue components taken 
from the literature.   

 Cell component  Refractive index  Reference 

 Water  1.33  [ 3 ] 

 Cytoplasm, rat liver cells  1.38  [ 4 ] 

 Mitochondria, rat liver cells  1.40  [ 4 ] 

 Lipid  1.48  [ 4 ] 

 Cytoplasm  1.35  [ 5 ] 

 Protein  1.50  [ 5 ] 

 Cytoplasm, hamster ovary cells  1.37  [ 6 ] 

 Mitochondria, rat liver  1.42  [ 7 ] 

 Melanin  1.7  [ 8 ] 

 Cytoplasm  1.358–1.374  [ 9 ] 

 Cortical cytoplasm  1.353–1.368  [ 10 ] 

 Dried protein  1.58  [ 11 ] 
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 particle and is denoted by  σ  s . Although the units of  σ  s  are area (m 2 ), 
the scattering cross section is not the same as the geometrical cross 
section of the particle and, in fact no simple relationship exists 
between the cross sectional area and  σ  s . 

 While the scattering cross section is used to defi ne the degree 
of light scattering from a single particle, it has limited applicability 
in complex tissues such as neural tissue since it is very diffi cult to 
defi ne what comprises a single particle. The scattering cross section 
of objects such as microspheres and metallic nanoparticles are very 
useful since these particles have well-defi ned geometries. However, 
tissues contain a continuously varying refractive index on the nano-
meter length scale. Previous studies have characterized the scatter-
ing cross sections of biological cells and subcellular organelles [ 13 ], 
but it is very challenging to relate these isolated scattering cross 
sections to tissue level descriptions of light scattering [ 14 ]. 

 The scattering coeffi cient,  μ  s , is the most common measure of 
macroscopic, or tissue level scattering. The quantity  μ  s  dl  represents 
the probability of light scattering along a distance  dl , and 1/ μ  s  
represents the scattering mean free path,  l  s , i.e., the average dis-
tance a photon travels between scattering events. The scattering 
coeffi cient,  μ  s , is a macroscopic measure of light scattering whereas 
the scattering cross section,  σ  s , is a microscopic or single particle 
measure. For discrete particles, the scattering coeffi cient and cross 
section are related by  μ  s  =  σ  s  N   v  , where  N   v   is the volumetric particle 
density (m -3 ). For neural tissues, the scattering cross section is dif-
fi cult to defi ne due to the complex spatial composition of the tis-
sues, and as a result, the volumetric particle density is also diffi cult 
to defi ne. Nevertheless, the scattering coeffi cient,  μ  s , is still a useful 
quantity since it is an aggregate measure of the scattering strength 
over a region of neural tissue. 

 Because in vivo measurement of absolute scattering coeffi cients 
involves complex experimental measurements that must be care-
fully calibrated and coupled with robust models of light propaga-
tion in tissues, signifi cant variability exists in scattering coeffi cients 
reported in the literature. In vivo measurement of optical proper-
ties typically involves measurement of refl ected intensities at mul-
tiple points along the tissue surface. The scattering and absorption 
properties of the tissue that give rise to these signals must then be 
determined by solving an appropriate inverse problem. Decoupling 
the contributions of skull, scalp, gray, and white matter are particu-
larly challenging and can be aided by time- and frequency-domain 
measurements as well as a priori knowledge of anatomical structure 
[ 15 ,  16 ]. Therefore, the accuracy of in vivo measurement of opti-
cal properties is often determined by the accuracy of the approach 
used to solve the inverse problem. Ex vivo measurement of optical 
properties is often performed using integrating spheres that measure 
the diffuse refl ectance and transmission of thin tissue sections as a 
function of wavelength. Like in vivo measurements, the integrating 
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sphere measurements must be combined with an appropriate 
inverse model to extract optical properties. These models include 
Monte Carlo models, analytical expressions based on the diffusion 
approximation, and the inverse adding doubling technique [ 17 ]. 

 Experimental measurements of the scattering coeffi cient of 
cortex are in the range of  μ  s  = 8–12 mm–1 at wavelengths between 
650 and 950 nm and show a slight decrease with increasing wave-
length [ 2 ,  18 ]. These values correspond to a mean free path of 
80–125 μm, which represents the average distance between scat-
tering events when scattering is treated as a macroscopic process. 
In other words  μ  s  attempts to encapsulate the microscopic scatter-
ing from a volume of tissue. However, when considering very small 
length scales, the macroscopic interpretation of light scattering can 
be somewhat misleading since light cannot really travel 100 μm 
without any deviation. Instead, the 100 μm mean free path attempts 
to combine all of the very small deviations due to the microscopic 
variations in refractive index.  

3    Optical Tissue Properties and Their Relation to Optical Imaging 
of Cortical Function 

 Both scattering and absorption can provide in vivo functional 
information about the cortex. One of the earliest examples of such 
an application was the detection of membrane potential changes by 
changes in light scattering in cultured neurons [ 19 ]. Dark fi eld 
microscopy was used to detect the very small changes in light scat-
tering that resulted from induced changes in transmembrane 
potential and a linear relationship between the scattered light 
intensity and membrane potential was found. The underlying 
mechanism was found to be a change in the radial component of 
the refractive index that corresponded to membrane potential. 
Although this study and other similar studies in slices [ 20 ,  21 ] 
established experimentally a direct change in light scattering inten-
sity with membrane potential, the magnitude of the intensity 
changes is very small (<10 −5 /mV). These studies have led to a 
renewed interest in monitoring neural activity in intact cortex 
through light scattering changes. One of the fi rst reports of nonin-
vasive detection of this signal was by Gratton et al. [ 22 ] who 
showed a phase shift in frequency-domain diffuse optical tomogra-
phy measurements. A number of more recent studies have demon-
strated that measuring such a small signal noninvasively is extremely 
challenging due to the very low signal to noise ratio (see [ 23 ] for a 
review of recent literature). 

 Perhaps the most widely used optical method for imaging cor-
tical function is OIS, which indirectly measures cortical activity by 
detecting the hemodynamic and metabolic changes that arise from 
neural activity [ 24 ]. Both scattering and absorption play important 
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roles in these measurements. Light scattering is required to refl ect 
light back to the camera, but it also limits the penetration depth of 
the measurements to the very superfi cial cortex. Absorption of 
light by oxygenated and deoxygenated hemoglobin provides the 
source of contrast in OIS. Therefore, the spatial and temporal 
dynamics of the hemodynamic response to activation can be deter-
mined qualitatively simply by examining the resulting changes in 
refl ected light intensity. However, quantitative determination of 
the changes in oxy- and deoxy-hemoglobin requires measurements 
at multiple wavelengths and spectroscopic analysis of such mea-
surements [ 25 – 28 ]. The optical properties of neural tissue play a 
very important role in such an analysis. In particular, both absorp-
tion and scattering effects must be accounted for. Assumptions 
must be made about baseline values of absorption and scattering 
coeffi cients. The absorption coeffi cient values are determined from 
the assumed baseline concentrations of oxy- and deoxy- hemoglobin. 
A value of the scattering coeffi cient and its wavelength dependence 
must also be assumed for calculation of the differential path length 
factor [ 27 ]. The controversy over the presence or absence of an 
initial increase in deoxy-hemoglobin during functional activation 
arose in part due to the role of the wavelength dependent scatter-
ing of neural tissue [ 25 ,  27 ]. 

 The optical properties of neural tissues and tissue in general, 
particularly scattering, place constraints on the surgical preparation 
for most cortical imaging studies. Scattering by the skull and dura 
necessitates a thinned skull or full craniotomy preparation. Even 
when thinned skull preparations are used, mineral oil or glycerol is 
usually applied to the surface prior to imaging. These agents serve 
to improve image quality by reducing the scattering of the remain-
ing skull. The applied oils have a relatively high refractive index 
that serves to reduce the spatial variations in refractive index, which 
in turn reduces the total scattering and improves image quality. 
Because scattering from the skull and cortical tissue strongly atten-
uates excitation light, microscopic methods such as in vivo two- 
photon imaging and confocal imaging usually require removal of 
the skull, although thinned-skull preparations can also be applied 
(see Chapter 16 in this volume). Maximum imaging depth how-
ever, is achieved by full removal of the skull or polishing the skull 
to transparency [ 29 ]. However, thinning the skull can reduce scat-
tering suffi ciently to allow imaging to depths of a few hundred 
microns while making the preparation slightly less invasive.  

4    Methods for Modeling Light Propagation in Neural Tissues 

 Knowledge of the scattering and absorption properties of neural 
tissues alone is not suffi cient to perform a quantitative analy-
sis of imaging data or to predict maximum imaging depths. 
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For such analysis, a model of light propagation in tissue is 
required. Many different models have been developed and each 
is useful for modeling different spatial scales and measurement 
geometries. However, all approaches require knowledge of the 
scattering and absorption properties of tissue as inputs. In this 
section we review some of the modeling approaches that have 
been used and highlight how the role of optical properties of 
neural tissue in these models. 

  The Monte Carlo method for simulating light propagation in bio-
logical tissues is the most widely used modeling approach. In this 
approach photons are treated as particles that traverse the tissue in 
a stochastic process based on the radiative transport equation [ 30 ]. 
After tracing a large number of photons, information about 
refl ected intensities and sampling distributions can be determined. 
Like all of the modeling approaches described here, results obtained 
from Monte Carlo simulations are only accurate when the spatial 
distribution and quantitative values of scattering and absorption 
coeffi cients are accurate. 

 Monte Carlo simulations require knowledge of the scattering 
coeffi cient,  μ  s , the absorption coeffi cient,  μ  a , and the scattering 
anisotropy,  g , which characterizes the angular distribution of scat-
tered light. The total attenuation coeffi cient,  μ  t , is defi ned as the 
sum of the absorption and scattering coeffi cients,  μ  t  =  μ  s  +  μ  a . 
Anisotropy is the average cosine of the scattering angle and its val-
ues range from −1 to 1, where a value of 1 indicates completely 
forward scattering, 0 indicates isotropic scattering, and −1 indi-
cates pure backscattering. Most soft tissues have anisotropy values 
around 0.9. In Monte Carlo simulations, a series of random num-
bers are generated to sample probability distributions that charac-
terize photon propagation events such as scattering angle and 
distance between scattering events. Further details on Monte Carlo 
simulations of light propagation in tissues can be found in a num-
ber of reviews [ 31 ,  32 ]. 

 Light propagation through complex geometries such as a 
human head can be modeled by assigning spatially varying scatter-
ing and absorption properties to anatomical geometries obtained 
with other imaging modalities such as MRI [ 33 ,  34 ], two-photon 
excited fl uorescence microscopy [ 35 ], and optical coherence 
tomography [ 36 ,  37 ]. Figure  2  illustrates two examples of hetero-
geneous geometries used in Monte Carlo models. In one case, an 
anatomical MRI was segmented into different tissue types and 
optical properties of each tissue type were assumed [ 33 ]. In the 
other case, two-photon fl uorescence images of cortical microvas-
culature were segmented to model light propagation in vascular 
fl uorescence imaging (described in more detail below), and scat-
tering and absorption coeffi cients were assigned to vascular and 
nonvascular tissues.

4.1  Monte Carlo 
Simulations
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     Monte Carlo simulations work well when simulating multiple 
 scattering effects in tissues. However, when the tissue volume of 
interest is small, or when the effects of small-scale features such as 
subcellular components on light scattering are desired, Monte 
Carlo methods cannot usually be used. In order to properly model 
such small-scale features, an electromagnetic approach that takes 
into account the wave nature of light must be employed. Although 
numerous electromagnetic modeling methods have been devel-
oped, all require extensive computational resources. The most 
common method for modeling light scattering from complex bio-
logical tissues [ 13 ] is the fi nite-difference time-domain (FDTD) 
method [ 39 ] due to its relative simplicity and its ability to incorpo-
rate arbitrary three-dimensional spatial variations in refractive 
index. The FDTD method has been used extensively to solve a 
wide variety of electromagnetics and scattering problems [ 40 ]. 
This method is a full vector solution of the electric and magnetic 
fi elds in a small region surrounding an object. The electric and 
magnetic fi elds are discretized on a spatial grid and are updated in 
a time stepping manner. The full details of FDTD simulations can 
be found in a number of reviews [ 40 ]. 

 Unlike Monte Carlo models where the macroscopic scattering 
and absorption coeffi cients are used to defi ne the tissue, in FDTD 
models, the spatially varying dielectric properties (or refractive 
index) of tissue at the scale of a few nanometers are used to create 
the geometry. Absorption can be incorporated into such models by 
including a complex refractive index. Figure  2c  illustrates an exam-
ple of a three-dimensional multi-cell geometry used in an FDTD 

4.2  Finite-Difference 
Time-Domain Method

  Fig. 2    Examples of geometries used in modeling light propagation through tissue. ( a ) Light transport through 
human head modeled using Monte Carlo simulations coupled with anatomical MRI data that was segmented 
into discrete tissue types (indicated by different  grey  levels). Scattering and absorption properties can then be 
assigned to each tissue type [ 33 ]. ( b ) Monte Carlo models can also be used to simulate light transport in inva-
sive optical imaging geometries using segmented image stacks from two-photon microscopy as shown here. 
Separate optical properties can then be used for vascular and nonvascular tissues. ( c ) Electromagnetic model-
ing of light propagation enables subcellular structures to be considered assigning different refractive indices 
to each structure. The colors represent refractive indices ranging from 1.37–1.40 [ 38 ]. Each of the spherical 
structures ( magenta color ) represents cellular nuclei and the blue structures represent smaller organelles.       
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simulation of focused beam propagation [ 38 ]. In this example, the 
cells are constructed from cubic voxels and the refractive index at 
each voxel is used to specify individual cellular components. In the 
example in Figure  2c  nuclei of cells have a different refractive index 
than smaller organelles and cytoplasm. The major drawback of 
FDTD models, however, is the large computational demand that is 
required to simulate realistic tissues. The computational require-
ments result from the stability criteria of the fi nite difference 
approach which limits the maximum voxel size to one tenth of the 
wavelength of light [ 39 ]. In practice, most simulations of light 
scattering by biological cells use cubic voxels that are  λ /20 to 
 λ /15. Due to the need to discretize geometries with such fi ne res-
olution, two problems arise in FDTD models. First, the refractive 
index distribution should be known on length scales of approxi-
mately 10 nm. As discussed earlier, refractive index values are very 
diffi cult to measure and therefore, they are assumed in most 
 models. Despite this limitation, FDTD simulations can provide 
detailed information about the effects of organelles on light scat-
tering from cells [ 13 ,  14 ,  41 ] as well as the effects of cellular struc-
tures on the beam profi le of focused beams [ 38 ]. The second 
problem is that the computational requirements for simulation of 
volumes of tissue that are only ~50 μm on a side are extremely 
high. In particular, the memory requirements for such simulations 
require the use of distributed computing systems that can provide 
hundreds to thousands of gigabytes of memory [ 14 ].   

5    Infl uence of Optical Properties on Cortical Imaging 

 In this section we describe several examples of how optical proper-
ties of neural tissue infl uence some common cortical imaging 
methods. These studies illustrate the strong infl uence of scattering 
and absorption on the depth sensitivity of camera-based refl ectance 
and fl uorescence methods and on the depth penetration limits of 
techniques such as two-photon excited fl uorescence microscopy. 
These studies also highlight the importance of the modeling 
approaches described above. 

  Camera-based imaging of the cortex such as OIS, multi- wavelength 
OIS, laser speckle contrast imaging (see Chapters   14     and   15     in this 
volume), and voltage sensitive dye imaging (see Chapter   8     in this 
volume), provide valuable information about cortical activity on 
the macroscopic spatial scale (without cellular resolution). Rather 
than providing depth-resolved activation images, these techniques 
provide depth-integrated measures of cortical activation. However, 
the depth weighting is not a simple uniform weighting function. 
Instead, it is dependent on tissue optical properties, measurement 

5.1  Depth Sensitivity 
of Camera-Based 
Refl ectance and 
Fluorescence Imaging 
of Cortex
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geometry, and tissue structure. In vivo experimental determination 
of this depth sensitivity function and the role of optical properties 
are exceedingly challenging. As a result, modeling studies must be 
performed to systematically address these issues. 

 One example of such a modeling study is illustrated in Box  1  
[ 42 ]. In this study the role of several experimental parameters on 
the depth sensitivity of camera-based refl ectance and fl uorescence 
imaging was investigated using Monte Carlo simulations. 

   Box 1 Spatial Resolution and Depth Sensitivity of Camera-Based 
Intrinsic Optical Imaging. 

    This box describes the main fi ndings from the Monte Carlo simulation 
study by [ 42 ] focused on estimation of the spatial resolution and the depth 
sensitivity of the camera-based 2D optical imaging methods [ 42 ]   . 

 In OIS, the measured signal (the intensity of each pixel on the CCD) is 
a weighted sum of the contribution from tissues at different cortical 
depths. The term “depth sensitivity” is used to describe this weighting 
function. Due to both light scattering and defocus, an array of point 
sources along the cortical depth results in a blurred image on the CCD. 
The term “spatial resolution” is used to characterize the lateral size of this 
image. 

 Both properties, i.e., spatial resolution and depth sensitivity, are deter-
mined by confi gurations of the imaging system (numerical aperture, NA, 
and focal plane depth, FPD) and optical properties of the cortical tissue 
(refractive index  n  0 , the anisotropic factor  g  0 , the scattering and absorption 
coeffi cients,  μ  s0  and  μ  a0 ). Monte Carlo simulations were used to character-
ize the spatial resolution and depth sensitivity with optical confi gurations 
typically encountered in functional brain imaging, i.e., NA of 0.1, 0.2, and 
0.4; FPD from 20 to 600 μm and tissue parameters that represent cortical 
gray matter in visible wavelengths up to 670 nm:  n  0 ,  g  0 ,  μ  s0 , and  μ  a0 , of 1.4, 
0.9, 35, and 0.27 mm, respectively. 

 If the image is in focus on the cortical surface (FPD = 0), then a point at 
the focal plane will be imaged onto a point on the detector (the CCD chip) 
with minimal blurring. However, if FPD>0, then an area with a certain 
radius around the point at the focal plane will contribute to a point on the 
detector; therefore, the profi le on the detector will be “blurred.” The 
larger the focal plane depth and NA, the more blurring this will induce, 
thus leading to a wider profi le and a lower spatial resolution, as can be seen 
in Fig.  B1a    . This analysis demonstrates that  the spatial resolution of OIS is 
less than or comparable to the size of cortical columns . For example, it is less 
than 200 μm for NA less than 0.2 or FPD less than 300 μm, and can be as 
high as ~20–30 μm for FPD less than 100 μm.

   For functional imaging applications with hemodynamic activity spread 
over hundreds of microns (with lateral size comparable to or larger than 
spatial resolution),  increasing NA and focal plane depth  (“ focusing deeper in 
tissue ”)  does not increase the contribution from deeper tissues, but rather reduces 
the spatial resolution  (Fig.  B1b ). Increasing NA and focal plane depth may 
improve the contribution from deeper tissues when the activity is localized 

(continued)
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Box 1 (continued)

within tens of microns spread in the  XY  plane (Fig.  B1b ). However, such 
limited spread does not naturally occur in the cerebral cortex. 

 More than 97 % of the OIS signal comes from the top 500 μm of the 
tissue, cortical layers 1 to 3. More specifi cally, about 38, 34, 16, 7, and 3 % 
of the signal are from tissues from 0–100, 100–200, 200–300, 300–400, 
and 400–500 μm of the cortical depths, respectively (Fig.  B1b ). In other 
words,  OIS has virtually no sensitivity to hemodynamic events deeper than 
400 μm , unless the activity propagates upstream within the arteriolar vessel 
wall [ 43 ]. 

  Fig. B1    Estimation of spatial resolution and depth sensitivity of OIS. 
( a ) Spatial resolution versus focal plane depth for NA of 0.1 ( circle ), 0.2 
( star ), and 0.4 ( triangle ), respectively. ( b ) Depth sensitivity for functionally 
activated “columns” of two different cross-sectional areas: 50 × 50 and 
200 × 200 μm 2 . NA is fi xed at 0.2 and the focal plane depth is varied 
between 100 ( blue ), 300 ( circle ), and 500 ( triangle ) μm. ( c ) The same as ( b ) 
but the focal plane depth is fi xed at 300 μm and NA is varied among 0.1 
( circle ), 0.2 ( star ), and 0.4 ( triangle ).       
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 The optical properties of the cortex also play an important 
role in fl uorescence and phosphorescence-based measurements. 
A common assumption for Monte Carlo-based modeling studies 
is that the tissue can be approximated as a homogeneous medium. 
However the validity of this assumption has not been thoroughly 
investigated. Figure  B1  shows an example of Monte Carlo simu-
lations of camera-based fl uorescence measurements in mouse 
cortex [ 35 ]. In these simulations the fl uorescence signal was 
assumed to originate in the vasculature to mimic vascular fl uores-
cence measurements. To accurately model this type of measure-
ment, the detailed microvascular anatomy was incorporated into 
the simulation. The geometry was created from a stack of two 
photon fl uorescence images of mouse cortical vasculature (blood 
plasma was labeled with fl uorescein-dextran) that were segmented 
into two tissue types (vasculature and non-vasculature). Scattering 
and absorption properties were assigned to intra- and extravascu-
lar tissues, and a Monte Carlo model was used to propagate exci-
tation and emission photons resulting from one photon absorption 
[ 34 ]. The simulated fl uorescence intensity was used to calculate 
the spatial distribution of the origins of fl uorescent signals. 
Vascular areas were assumed to contain a fl uorophore to mimic 
measurements such as oxygen-dependent phosphorescence quench-
ing [ 44 – 46 ] and indocyanine green fl uorescence of vasculature 
[ 47 ]. Figure  B1a  and  B1b  shows the depth profi le of the detected 
fl uorescence signal at three different excitation wavelengths (415, 
524, and 800 nm). The optical properties at each of these excita-
tion wavelengths varied and the results indicate that for all wave-
lengths the majority of the detected signal originates in the fi rst 
400 μm of tissue, consistent with the results from a homogeneous 
geometry. However, the distribution as a function of depth is not 
smooth due to the heterogeneity of the cortical vasculature. Each 
of the peaks in the curves in Fig.  3a  is the result of fl uorescence 
contributions of single subsurface vessels. While this result may 
be specifi c to fl uorescence originating only in the vasculature, it 
illustrates the importance of modeling with realistic geometries. 
Finally, Figure  3b  illustrates the spatial distribution of the detected 
fl uorescence or phosphorescence for a single pixel in a camera. 
Therefore, these results represent a measure of the spatial point 
spread function of camera-based fl uorescence imaging of fl uores-
cently labeled cortical vasculature.

    As described in several chapters of this book, two-photon excited 
fl uorescence microscopy is now a standard tool for in vivo investiga-
tion of many aspects of cortical function. Two-photon imaging 
enables a high spatial resolution and three dimensional imaging 
throughout much of the cortex, but the maximum penetration 

5.2  Effects of 
Scattering on 
Resolution and Signal 
Strength in Two-
Photon Imaging
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depth is ultimately limited by light scattering. Excitation wavelengths 
are in the near-infrared where scattering is lower than for single 
photon excitation. In addition, non-descanned detection enables 
detection of emission photons that have been multiply scattered. 
These two features enable signifi cantly deeper imaging than with 
single-photon excited fl uorescence confocal microscopy. 
Nonetheless, scattering can affect two-photon fl uorescence signals 
in two main ways. First, scattering attenuates excitation and emis-
sion light resulting in a strong decay of signal strength with depth. 
Second, scattering could potentially lead to a spatial spreading of 
the focused beam spot leading to lower two photon absorption 
and degradation in spatial resolution. Experimentally, the fi rst of 
these two effects has been shown to be the dominant factor. 
However, systematic modeling of these two effects and the role of 
scattering properties in signal attenuation and resolution has only 
been reported in a few studies [ 38 ,  48 ,  49 ]. 

 Several Monte Carlo-based studies have investigated the role 
of optical properties on two-photon excited fl uorescence signal 
levels and resolution [ 48 – 51 ]. These models simulate the focused 
beam geometry and propagate photons in a ray tracing approach 
that accounts for multiple scattering. Results from these studies 
have predicted models for signal attenuation. In particular, these 
simulations revealed that a single scattering event by an excitation 
photon is suffi cient for that photon to “miss” the focal volume 

  Fig. 3    Monte Carlo modeling of cortical fl uorescence. ( a ) The depth dependence of fl uorescence signals for 
camera-based imaging of fl uorescently labeled cortical vasculature was modeled for visible and near-infrared 
fl uorescent dyes with three different excitation wavelengths. ( b ) The three-dimensional geometry derived from 
the stack of two-photon fl uorescence images shown in Fig.  2b  was used. The majority of the measured fl uo-
rescence signal was found to originate in the superfi cial 200 μm of cortical vasculature. The three-dimensional 
rendering demonstrates the spatial distribution of fl uorescence light for the visible and near-infrared fl uores-
cent dyes measured by 1 camera pixel.       
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and therefore, not contribute to two-photon absorption even if 
the angular deviation of the scattering is very small [ 48 ]. Perhaps 
the most signifi cant result of these Monte Carlo studies is the 
result demonstrating the signifi cant advantage in detected sig-
nal levels using high NA, low magnifi cation objectives [ 49 ]. 
Such an objective maintains spatial resolution, which is only 
dependent on NA and wavelength. However, the combination 
of high NA and low magnifi cation greatly increases the collec-
tion effi ciency of fl uorescence emission in scattering samples by 
increasing the amount of multiply scattered fl uorescent photons 
that would be lost with high magnifi cation or lower NA objec-
tives. For non-scattering samples, the high NA, low magnifi ca-
tion objectives do not provide such an advantage since the 
collection effi ciency is only dependent on NA in the absence of 
scattering (Fig.  B1 ).

   The effects of scattering on the beam profi le in two-photon 
fl uorescence microscopy are more challenging to systematically 
investigate than the effects of scattering on signal strengths due to 
the need to account for diffraction. Recently, the FDTD modeling 
approach has been used to simulate the propagation of focused 
beams in tissues [ 38 ]. Although computationally costly, FDTD 
modeling enabled full vector solutions of Maxwell’s equations for 
focused beam propagation through inhomogeneous biological 
 tissues. A fi fth order Gaussian beam profi le was assumed for 
 computational simplicity and the full electric and magnetic fi elds 
were determined in the focal region. The geometry consisted of a 
50 × 50 × 50 μm3 volume containing 27 cells (Fig.  4 ). Each cell con-
tained a nucleus as well as a heterogeneous distribution of smaller 
organelles ranging in size from 0.25 to 1.5 μm. Refractive index 
values for each cell component were assumed from literature values 
(see Table  1 ) and most organelles contained internal variations in 
refractive index. Although this tissue geometry is not specifi c to 
neural tissue, these results still provide insight into the effects of 
optical properties on focused beam propagation.

   The two-photon excitation point spread function of the 
focused beam was determined by converting the steady state fi eld 
distribution to intensity and squaring the resulting intensity. 
Figure  4  illustrates the spatial distribution of intensity when the 
focal plane is located approximately 42 μm into the sample. The 
beam appears distorted due to scattering but the beam profi le 
through the focus remains mostly intact. This modeling study also 
illustrates that the central width of the excitation point spread 
function remains mostly constant as a function of focal plane 
depth, at least within the fi rst 50 μm that were modeled. In addi-
tion, the intensity in the beam focus decayed exponentially with 
focal plane depth. Therefore, these results are similar to previous 
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Monte Carlo and experimental results that scattering degrades 
signal strength but does not signifi cantly affect spatial resolution. 
Although these FDTD studies were limited to relatively small vol-
umes, further advances in computing power should enable full 
electromagnetic simulation of focused beam propagation over 
larger length scales.     

6     Conclusions 

 The optical properties of neural tissue play important roles in almost 
all methods for imaging cortical function and structure. In some 
cases the optical properties provide the source of contrast, while in 

  Fig. 4    Electromagnetic modeling of the effects of light scattering on beam profi le of a focused laser using FDTD 
[ 38 ]. ( a ) The spatial intensity of a beam focused approximately 42 μm into a heterogeneous collection of cells. 
( b ) The radial beam profi le for two focal planes at 12 and 42 μm depth demonstrates that the width of the 
central lobe of the beam remains intact with increasing depth, but the intensity in the side lobes increases 
signifi cantly. ( c ) The percent change in radial beam width shows little change with depth even as the fraction 
of subcellular organelles increases. ( d ) The integrated intensity within the focal volume, however, decreases 
exponentially with depth, consistent with the experimental fi nding that the limitation on imaging depth in two- 
photon fl uorescence microscopy is loss of signal due to scattering rather than loss of resolution.       

 

Andrew K. Dunn



49

other cases they limit the imaging penetration depth or resolution. 
In both situations it is important to understand how optical proper-
ties infl uence imaging data. Modeling techniques can offer impor-
tant insights into the role of optical properties. However, one of the 
greatest limitations of modeling methods is often the uncertainty in 
the optical properties of neural tissue, particularly scattering. 
Therefore, further effort is required to obtain more conclusive val-
ues for scattering coeffi cients at multiple wavelengths as well as 
refractive index values.     
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