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Abstract
Recent advancements in multiphoton imaging and vascular reconstruction algorithms 
have increased the amount of data on cerebrovascular circulation for statistical 
analysis and hemodynamic simulations. Experimental observations offer fundamen-
tal insights into capillary network topology but mainly within a narrow field of view 
typically spanning a small fraction of the cortical surface (less than 2%). In contrast, 
larger-resolution imaging modalities, such as computed tomography (CT) or magnetic 
resonance imaging (MRI), have whole-brain coverage but capture only larger blood 
vessels, overlooking the microscopic capillary bed. To integrate data acquired at mul-
tiple length scales with different neuroimaging modalities and to reconcile brain-wide 
macroscale information with microscale multiphoton data, we developed a method 
for synthesizing hemodynamically equivalent vascular networks for the entire cer-
ebral circulation. This computational approach is intended to aid in the quantifica-
tion of patterns of cerebral blood flow and metabolism for the entire brain. In part 
I, we described the mathematical framework for image-guided generation of syn-
thetic vascular networks covering the large cerebral arteries from the circle of Willis 
through the pial surface network leading back to the venous sinuses. Here in part 
II, we introduce novel procedures for creating microcirculatory closure that mimics a 
realistic capillary bed. We demonstrate our capability to synthesize synthetic vascular 
networks whose morphometrics match empirical network graphs from three inde-
pendent state-of-the-art imaging laboratories using different image acquisition and 
reconstruction protocols. We also successfully synthesized twelve vascular networks 
of a complete mouse brain hemisphere suitable for performing whole-brain blood 
flow simulations. Synthetic arterial and venous networks with microvascular closure 
allow whole-brain hemodynamic predictions. Simulations across all length scales will 
potentially illuminate organ-wide supply and metabolic functions that are inaccessible 
to models reconstructed from image data with limited spatial coverage.
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1  |  INTRODUC TION

Mathematical models of cerebral circulation for hemodynamic 
simulations combine biophysical principles with vascular anatom-
ical data from medical images. Increasingly, models are becoming 
an indispensable research tool to integrate and reconcile direct 
imaging observations,1-6 predict cerebral blood flow patterns,7-16 
oxygen-exchange from blood vessels to tissue,11,12 elucidate mech-
anisms of blood flow control, and quantify disruption in pathological 
states.17-20 Previously, we identified shortcomings when recon-
structing vascular anatomical networks from raw image data.21 As 
a compliment or alternative to purely image-based network models 
(=empirical VAN or simply denoted as VAN), network synthesis can 
systematically integrate imaging data from diverse modalities (μCT, 
MRI, multiphoton, SEM, etc.) acquired at different length scales to 
create synthetic vascular networks  (sVANs) that match structural, 
hemodynamic, and metabolic properties of empirical VAN. In this 
combination of papers, we present a large-scale algorithm enti-
tled image-based cerebral network synthesis (iCNS) for synthesizing 
physiologically sound, anatomically complete cerebrovascular net-
works. The iCNS algorithm allows us to not only create synthetic 
counterparts to experimental templates, but also generate network 
models of the entire cerebral circulation by extending connectivity 
and topological information obtained from multimodal neuroimage 
data to the whole brain. In part I of this series,21 we redesigned and 
significantly expanded constrained constructive optimization (CCO) 
principles. The iCNS algorithm expands traditional CCO algorithms 
by methods for integrating image data such as surface reconstruc-
tions (=STL files) and reconstructed vascular networks (=backbones). 
iCNS allows emulation of essential anatomical features (=ring struc-
tures without tree-like connectivity) such as the circle of Willis and 
the unique spatial arrangement of the large lateral segments that 
adhere tightly to the cortical surface (=pial networks of the ACA, 
MCA, PCA territories). Although we believe that minimization of 
vascular lumen is an elemental building principle for blood supply 
networks, additional physiological constraints need to be imposed 
in order to meet the metabolic demands of specific organs. For ex-
ample, the cerebral arterial blood vessels follow the leptomeningeal 
surface of the gyrated human cortex. Such additional building princi-
ples, when suitably input into our method, enable the generation of 
artificial networks that reproduce functional blood supply. We will 
demonstrate our approach to integrate organ-specific anatomical 
constraints for synthesizing consistent cerebrocirculatory networks. 
Specifically, during stepwise growth of iCNS we enforce leptomen-
ingeal passage of the main pial arteries and veins tracking the cor-
tical surface (pia), the alignment of arterioles and veins penetrating 
the brain tissue perpendicular to the cortical surface, or the branch-
ing patterns of long and short penetrating arterioles and veins. 
Anatomical constraints can be implemented through novel methods 
such as SampleGenerators that limit the geometric location where 
artificial segment addition is permitted to occur; and Constraint 
Functors to enforce desired metric specifications (=position, orien-
tation, size, etc.) that must be followed during each growth stage.

Here in part II, we will investigate the critical innovation of mi-
crovascular closure for the generation of mesh-like network struc-
tures that connect the arterial and venous circulation through an 
artificial capillary bed that is both hemodynamically (=shares equiv-
alent blood flow properties) and physiologically consistent (=struc-
tural similarity) with image-derived counterparts. Robustness and 
reproducibility of the iCNS algorithm will be demonstrated by 
synthesizing hundreds of microvascular networks matching vascu-
lar structures from three cohorts (total of N = 15 unique image-
derived networks) from the murine cerebral vasculature acquired 
by independent groups using state-of-the-art in vivo and ex vivo 
multiphoton imaging techniques. We will show an approach to 
map key structural properties affecting hemodynamic compu-
tations such as length, diameter, tortuosity spectra, and vessel 
count from empirical VANs onto synthetic clones (sVANs) with a 
high degree of statistical agreement. We will also quantify the key 
structural properties related to hemodynamics for sVAN and as-
sess their statistical similarity to the empirical VANs. We further 
incorporate macro-, meso-, and microanatomical information from 
various imaging modalities to synthesize twelve cerebrovascular 
networks (=arteries+capillaries+veins, N = 12) spanning the entire 
hemisphere in mouse.

2  |  METHODS AND MATERIAL S

2.1  |  Microcirculatory data acquisition from three 
different sources

We first characterized the cerebral microcirculation of the vibrissa 
primary sensory cortex using data acquired independently in three 
state-of-the-art imaging laboratories.3,22,23 These data from three 
cohorts of mice were acquired with different multiphoton imaging 
techniques as described in Appendix  A and in more detail else-
where.3,22,23 The data sets (VANs) constitute a representative 
cross section of state-of-the-art imaging data available for the 
murine microcirculation. The Kleinfeld (KF) cohort (n = 4) used ex 
vivo imaging. The Boas (n = 5) and Dunn (n = 6) cohorts applied in 
vivo imaging with open cranial windows. Based on imaging data, 
vascular network graphs (VANs) were reconstructed as described 
previously.3,24,25

Segmentation-independent morphometric statistics were 
computed using cubic Bezier spline segments for all murine 
image-derived vascular networks as described in Appendix B. We 
calculated probability density functions (PDFs) and normalized cu-
mulative density functions (CDFs) for length, diameter, surface area, 
volume, and tortuosity spectra. We also generated global network 
statistics of segment density, total intravascular volume, and volume 
fraction. For visual inspection of microstructural geometric proper-
ties (such as vertical bias of vessels or simulation results), Walk-in-
Brain,26 a custom in-house 3D immersive visualization platform was 
used. An overview of dimension and aspects of empirical data sets 
is given in Figure 1.
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2.2  |  Large vessel morphometrics and 
construction of main vascular trees

Morphometric reconstructions of the cortical circulation, and positions 
and orientations of the main cerebral arteries (carotid, circle of Willis 
that served as backbones for hemisphere growth) were acquired with 
μCT imaging27 and confirmed with mouse atlases.28 More information 
on the data acquisition and reconstruction can be found in part I of this 
sequence.21 For the synthesis of large cerebrovascular trees extending 
from the main arterial trunks down to the pre-capillaries, we use the 
iCNS algorithm,21,29 which significantly extends constrained construc-
tive optimization principles29-32 as described in part  I. We derive the 
mathematical framework of iCNS for generating vascular trees by seg-
ment addition that minimized the tree volume, while satisfying hemody-
namic blood flow constraints as summarized conceptually in system (1):

where, V is the total vascular tree volume, x is the vector of un-
knowns that includes the optimal bifurcation coordinates (�, �), A 
is the diagonal resistance matrix, C1 is the graph incidence matrix, 
q is bulk blood flow, p is blood pressure, p is the desired perfusion 
pressure, and D is a diagonal decision matrix to enforce boundary 
pressures, p. The solution of the optimization problem during each 
segment addition step gives the optimal bifurcation point position (� 
and �) within the bifurcation plane. We refer to part I for a detailed 
discussion of the essential recursive formulae21 for computing opti-
mal bifurcation point coordinates and segment calibers without the 
need for inverting the entire flow matrix system. The relationships 
between diameters and diameter ratios are briefly summarized in 
Appendix C for completeness.

2.3  |  Microvascular closures

Microvascular closure aims at synthesizing microvascular structures 
that connect the arterial and venous sides of the vascular networks 
in a physiologically consistent fashion. We emphasized achieving 
hemodynamic equivalence between the empirical and the synthetic 
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F I G U R E  1 Comparison of length scales of image-derived and synthetic network models of the cerebral circulation in mouse. Empirical 
data–inlayed box in orange: Three cohorts of empirical networks (Dunn, ED1.1, Boas, EB1.1, and Kleinfeld, E1.1) provide excellent 
topological information about the microcirculation in small sections of the cortex, but are limited by a narrow imaging window. Synthetic 
data—all VANs outside the orange box: The iCNS algorithm is used to synthesize digital clones of the empirical data (sVAN). In addition, 
it enables drastic size expansions to construct anatomically sound cerebral networks for a large 3 × 3 × 1.2 mm3 portion of the cortex 
(Synthetic 3 × 3 × 1.2 mm3) or even an entire hemisphere of the mouse (synthetic hemisphere). The synthetic hemisphere spanning the 
circulation of one half of the murine brain encompasses pial arteries, penetrating arterioles, pre-capillaries, capillaries, post-capillaries, and 
ascending venules before finally draining through the venous sinuses. Color represents blood pressure from high (red =120 mmHg) to low 
(blue 5 mmHg)
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F I G U R E  2 Illustration of the different closure methods between arterial and venous trees. In the left column, in Step 1, a single arterial 
terminal is joined to the venous tree, while in the right column corresponding to Step 2, a venous terminal is closed. The top row shows the 
terminal matching (Method 1) where each terminal from the arterial tree must be paired to a terminal in the venous tree. The second row 
(Method 2) attaches each terminal to a nearby segment of the opposite tree through a new bifurcation in the opposing tree. In the third 
row (Method 3), each terminal attaches to two nearby segments of the opposite tree through two new bifurcations. The closure algorithm 
repeatedly adds connections in reciprocal manner (arterial closure—Step 1, venous closure—Step 2) until all terminals are closed on both 
trees
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VANs. Since blood flow and perfusion are primarily functions of 
blood vessel lengths, diameters, and connectivity, two networks 
are hemodynamically equivalent if they have similar graph connec-
tivity, and equal segment length and diameter spectra. Accordingly, 
we synthesized the arterial and venous branches from the large 
pial vessels down through the vertical penetrators to the smallest 
capillaries with number of splined segments, nsgm, of each vessel 
type matching our image databases of VANs. This generates trees 
(an arterial tree and a venous tree), each with a large number of 
open distal terminal nodes (nTerminals  =  nsgm/2). Microvascular 
closure then entails the synthesis of new microvessel segments so 
that blood can flow from the arterial to the venous side through 
the capillary bed without any gaps, holes, or dead ends (terminals). 
In other words, a microvascular closure embodies a network of mi-
crovessels, which connects open terminal nodes of the arterial tree 
to segments of the venous tree, and conversely, all open terminals 
of the venous tree will be connected to the arterial side.

Unfortunately, microvascular beds cannot be generated by con-
strained constructive optimization directly, because its logic only 
applies to a single binary tree. However, when trying to connect the 
arterial to the venous graph through new capillary segments, the 
respective trees would merge, thus losing the binary connectivity. 
Moreover, segment count, diameters, and orientation, as well as 
connectivity and branching patterns of synthetic networks, should 
match the in vivo microcirculatory angioarchitecture as close as pos-
sible. In addition, space filling properties such as tortuosity, mean 
distance between bifurcations, and closest distance from tissue to 
nearest capillary are significant metrics for solute exchange across 
the blood-brain barrier and should also be carefully considered. To 
address these requirements, we developed three microvascular clo-
sure algorithms.

2.3.1  | Matching terminal closure

The first method (illustrated conceptually in the top row of Figure 2-
top) entails the creation of microcirculatory segments by pairing free 
arterial terminals with free terminals of the venous tree. While this 
approach is the most obvious way to connect two sets of terminals, 
it has several drawbacks. First, finding unique pairings between ar-
terial and venous terminals is a combinatorial problem (specifically, 
a non-polynomial hard problem), whose computational effort scales 
exponentially with tree size, making this method intractable for large 
structures such as the mouse brain.

The combinatorial explosion can be circumvented by using suit-
able SampleGenerators (see details in part I) that furnish the coordi-
nates of free arterial segments to the final segment growth stage of 
the complimentary venous tree and vice versa. This implementation 
automatically guarantees that terminal arterial and venous branches 
fuse into each other without leaving gaps by directing terminal seg-
ments into a unique terminal node that is perfused from both sides. 
However, this method produces microcirculatory segments with fur-
ther problems. First, because all terminals must be connected to a 

corresponding terminal on the opposing tree, the segment length 
cannot be controlled in all connections, meaning the resulting capil-
lary bed will have undesirable length and diameter spectra. For the 
same reason, the orientation and angles between segments also 
cannot be controlled, leading to connections that are not physiologi-
cally sound. We do not recommend this method and only mention it 
for conceptual purposes.

2.3.2  |  Single bifurcation closure

The second method connects each terminal of the first tree (eg, 
arterial) to the other tree (ie, venous) by generating a new seg-
ment between the open terminal and attaching it to an existing 
segment belonging to the complimentary tree. The node at which 
this new segment intersects the complimentary tree forms a new 
bifurcation as shown in Figure  2, middle. This method benefits 
from simplicity enabling efficient implementation. Unfortunately, 
this technique also introduces many new connective microseg-
ments with “kinks,” which refers to the often quite acute angle 
between the segment upstream of the terminal node and the new 
closure segment resembling a kinked garden hose. Kinked seg-
ments introduce a high degree of tortuosity,�, in the synthetic 
capillary bed often exceeding the physiological range. Specifically, 
the tortuosity range of the image-derived VANs has an upper limit 
of three, � = [1. . 3], whereas kinked segments can reach � ∼ 8. The 
unwanted induction of excessive tortuosity caused by kinked seg-
ments can be corrected by replacing the two fused terminal seg-
ments (=upstream and closure segment) with a single straight or 
nearly moderately tortuous segment. This remedy overwrites and, 
in fact, alters the original position of the terminal node, which was 
initially supplied by the carefully characterized SampleGenerator 
to precisely meet anatomical constraints (eg, mean distance to 
other segments). In other words, rectifying tortuosity can injure 
or partially undue anatomical construction constraints carefully 
enforced in the prior synthesis stage. Furthermore, we note that 
single bifurcation closure can easily meet a desired total segment 
count (nsgm, as defined in terms of splined segments that includes 
all vessel subsections between adjacent bifurcations as described 
in Appendix B), because closure segment addition does not alter 
overall segment count or density. We may recommend this closure 
for simplified hemodynamic simulations, where tortuosity is of 
minor importance and only preservation of segment lengths and 
graph connectivity is necessary. On the other hand, this method 
is not ideal for simulations in three dimensions of oxygen ex-
change and solute transfer to brain tissue across the blood-brain 
barrier.11,12,33

2.3.3  |  Double bifurcation closure

The third algorithm is harder to implement but offers the high-
est degree of control over vessel length/orientation and sample 
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generation at every level of the capillary bed creation. This method 
creates two new microsegments that connect one terminal to two 
existing microsegments of the complimentary tree as illustrated in 
Figure 2, bottom. Each of the two connections from the open ter-
minal to the complimentary tree is similar to a single bifurcation 
addition presented above, but with the unique advantage that the 
terminal becomes a new bifurcation point. The point where each 
new segment attaches to the complimentary tree can be decided 
using rigorous optimization or by relaxed (no optimization) segment 
addition using a geometric heuristic. In both cases, anatomical con-
straints can be enforced with constraint functors as introduced in 
part I. Because of the ability to control angles and segment lengths 
with construction constraints, double bifurcation closure offers the 
highest level of control over critical morphological parameters such 
as segment length, angles, and segment density, which is necessary 
for synthesizing a microvascular bed with desired morphometrics. 
The double bifurcation closure does not suffer from the computa-
tional intractability of the matching terminal closure. It also avoids 
the introduction of excessive tortuosity of the single bifurcation 
closure. This method proved to be the most effective method for 
synthesizing sVANs that closely match hemodynamic and morpho-
logical statistics of the three cohorts of empirical VANs. We used 

this method to generate synthetic digital twins for all cohorts of 
cortical mouse data (N = 100 for Cohort 1, N = 5 for Cohort 2, and 
N = 5 for Cohort 3). Implementation details for double bifurcation 
closure are given in Appendix H.

3  |  RESULTS

3.1  |  Characterization of morphometrics of cortical 
circulation with three different sources

Three cohorts of empirical microcirculatory data sets covering 
the secondary cortex in mouse were analyzed as described in 
Methods section (KF: N = 4; Boas: N = 5; and Dunn: N = 6). This 
set serves as representative collection of imaging data available 
for the murine microcirculation. Structural properties and dimen-
sions of the Dunn, Boas, and Kleinfeld (KF) cohort of empirical 
VANs can be inspected in Figure 1. Splined segments (cubic Bezier 
splines) were used for analysis (as described in Appendix B) to re-
move any artifacts in raw segment counts caused by image reso-
lution or segmentation choices. CDFs of diameter, length, volume, 
and surface area were calculated for each spline in the network as 

F I G U R E  3 Morphological properties of networks derived from three cohorts of experimental neuroimaging data from the 
microvasculature in the murine somatosensory cortex. Shown here are representatives from the Dunn (n = 6), Boas (n = 5), and Kleinfeld (KF, 
n = 4) cohorts. A, Large variability is observed in topology profiles between the different groups, as can be seen for diameter, length, volume, 
and surface area spectra. B, The accumulated statistics of intravascular volume, intravascular length, intravascular surface area, blood 
volume fraction, segment density and total number of segments (nsgm) also display substantial variability between cohorts



    |  7 of 26HARTUNG ET AL.

visualized in Figure 3. We also calculated the cumulative network 
statistics of segment density, total intravascular volume, and volume 
fraction. These properties are also listed in Table 1.

3.1.1  |  Assessment of network variability

The high degree of similarity between the statistics of VANs 
within each cohort reflects the excellent reproducibility and ac-
curacy of the imaging and reconstruction protocols. However, due 

to inherent differences between the methodology used to acquire 
each cohort, domain sizes (imaging window size and cortical depth 
penetration) vary considerably between VANs from different co-
horts. For example, the KF sets reach down to a depth of more 
than 1500  μm, thus capturing the full length of penetrating ar-
teries down to the gray/white matter interface. In contrast, the 
Boas and the Dunn VANs penetrate about 600 μm into the corti-
cal depth. As a consequence, absolute quantities (cortical tissue 
volume–specific quantities) such as spline segment count, total 
intravascular tree length, and intravascular volume, length, surface 

Property

Value

Dunn Boas Kleinfeld

Label used for data set in 
this paper ED1.1 EB1.1–EB5.1 E1.1–E4.1

Approximate main 
dimensions of 
network (mm)

0.5 × 0.5 × 0.6 0.63 × 0.7 × 0.61 1.2 × 1.3 × 1.5

Segment diameter (μm) 9.15 ± 4.83 7.35 ± 4.16 3.87 ± 2.2

Segment tortuosity 1.15 ± 0.29 1.24 ± 0.54 1.11 ± 0.32

Segment length (μm) 67.1 ± 53.5 76.0 ± 66.6 57.0 ± 46.0

Tissue volume (μL) 0.14 ± 0.02 0.26 ± 0.06 2.16 ± 0.79

Number of segments/splines 
(nsgm)a 

1,211 ± 364 1,756 ± 759 24,669 ± 9,594

Segment density 
(nsgm/mm3)a 

8,573 ± 1,440 6,665 ± 2,371 11,473 ± 1,215

Vascular volume fraction (%) 5.11 ± 1.0 2.65 ± 0.3 1.13 ± 0.3

Vascular length density 
(m/mm3)

0.57 ± 0.05 0.49 ± 0.10 0.65 ± 0.08

Endothelial surface area 
density (mm2/mm3)

16.22 ± 0.5 10.86 ± 1.4 7.2 ± 1.56

Bifurcation density 
(nbif/mm3)

4,403 ± 640 4,415 ± 1,554 7,453 ± 779

Incidence of multifurcations 
(% of all nodes)b 

8.3 ± 1.1 1.1 ± 1.4 6.9 ± 0.9

Long penetrating artery 
density (nsgm/mm2)

NA NA 6.7 ± 1.6

Short penetrating artery 
density (nsgm/mm2)

NA NA 9.4 ± 5.3

Long ascending venule 
density (nsgm/mm2)

NA NA 7.6 ± 3.1

Short ascending venule 
density (nsgm/mm2)

NA NA 16.2 ± 5.2

Long ascending venule/
penetrating arteriole 
ratio

NA NA 1.29:1

Short ascending venule/
penetrating arteriole 
ratio

NA NA 2.12:1

Overall ascending venule/
penetrating arteriole 
ratio

NA NA 1.85:1

ansgm—number of segments, NA properties were not assessed. 
bMultifurcations are network nodes branching into more than three segments. 

TA B L E  1 Listing of network topological 
properties for different neuroimaging 
data cohorts of the mouse somatosensory 
cortex
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area, and surface area vary significantly from cohort to cohort as 
would be expected from the large variability between tissue vol-
ume sizes between cohorts.

Additionally, even relative properties (cortical tissue volume–
independent quantities) such as blood volume fraction and segment 
density exhibit a high degree of variance between cohorts as can be 
seen from the boxplots in Figure 3 despite the fact that the images 

represent similar regions of the cortex. For example, the blood vol-
ume fraction is less than 2% in all KF sets but exceeds 5% in the 
Dunn cohort with the Boas cohort in between. Moreover, segment 
density is lowest in Boas at an average of 6665 nsgm/mm3 compared 
with 8573 and 11,473 nsgm/mm3 in Dunn and KF cohorts, respec-
tively. These deviations can be attributed to differences in image 
acquisition protocols and underscores the unavoidable presence 

F I G U R E  4 Visualization of the microcirculatory hierarchy of blood vessels in the murine cortex for the four empirical networks from the 
Kleinfeld group (E1.1, E2.1, E3.1, and E4.1) and a synthetic network (S1.226).22 Top row: The full network shows all blood vessels in the full 
network. Second row: The extracted pial surface network (pial arteries, PA, and pial veins, PV) with penetrating arterioles (6.7 ± 1.6 long and 
9.4 ± 5.3 short nsgm/mm2) and ascending venules (7.6 ± 3.1 long and 16.2 ± 5.2 short nsgm/mm2) labeled with black (long penetrators) and 
gray dots (short penetrators). Third row: Long penetrating arterioles (LPA) dive down to cortical layers V-VI depth (>825 mm). Fourth row: 
More dense network of short penetrating arteries, SPA, and short ascending veins, SAV, only extends to layer IV. Fifth row: Long ascending 
venules (LAV) also collect blood from deeper layers than their short counterparts (layer VI). The color reflects blood pressure from high 
(red =120 mmHg) to low (blue =5 mmHg)
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of experimental variability in image reconstructions of the cerebral 
microcirculation.

We noticed high variability in the diameter, length, and tortuos-
ity information between cohorts. These spectra strongly depend on 
choices of animal preparation, imaging protocol, and reconstruction 
methods. For instance, the diameters were generally larger from 
cohorts using in vivo imaging (9.15 ± 4.8 μm in the Dunn group and 
7.37 ± 4.16 μm in the Boas group) when compared to the ex vivo coun-
terparts (3.87 ± 2.21 μm in the KF group). For length, segments in 
the Boas group (76.0 ± 66.6 μm) were longer than those in the Dunn 
group and KF group (67.1 ± 53.5 μm and 57.0 ± 46.0 μm, respectively).

Long/short penetrating vessels. We studied the connectivity pat-
terns of observable penetrating arterioles and ascending venules in 
more detail. Upon close inspection, we detected the existence of 
two distinct types of penetrating vessels emanating from the pial 
surface and launching into the depth of the cortex. These previously 
scarcely characterized groups included long penetrators (LPA) and 
short penetrators (SPA). Long and short penetrators can be differ-
entiated by segment thickness and maximum depth as highlighted in 
Figure 4. Specifically, long penetrating arteries with an occurrence 
frequency of 6.7 ± 1.6 nsgm/mm2 of the cortical surface are thicker 
(which range d > 10 μm at the pial surface) and dive down all the way 
to neuronal layers V/VI. Short penetrating arteries (9.4 ± 5.3 nsgm/
mm2 of the cortical surface) have capillary-like diameters (d < 10 μm 
at the pial surface) and reach only to layer IV. Additionally, short pen-
etrators have a bush-like appearance with only a few branches dis-
tributed uniformly along its length. Long penetrators have sparser 
trunks but branch numerously in deep layers IV–VI, thus resembling 
inverted tree trunks. The distinction of penetrators was most clearly 

visible in the KF set because of its deeper reach into the cortex. For 
veins, there are 7.6 ± 3.1 nsgm/mm2 long (LAV) and 16.2 ± 5.2 nsgm/
mm2 short ascending veins as measured per mm2 of cortical surface 
area, with all statistics also listed in Table 1. We also found that the 
prevalence of long penetrating arteries (LPAs) was nearly equal to 
the number of long ascending venules (LAVs) in each VAN; specifi-
cally, the frequency of LAVs to LPAs is 1.29:1. In short penetrators 
(SAVs and SPAs), we observed a 2.12:1 ratio.

Diameter variability with depth. We investigated the variability of 
the diameter spectra as a function of depth, we discovered trend 
by grouping the segment depths within defined cortical layers22,34,35 
with data gathered from the KF cohort, because it is the only cohort 
to span all neuronal layers (layers I–VI). We detected layer depen-
dency depicted in Figure 5, which revealed that the diameter spectra 
near the surface of the cortex (layer I) were markedly different than 
lower layers (layers II–VI). The mean and variability decrease along 
the depth of the subcortical region. As an example, we show the 
spectra of network E2.1 in Figure 5, which displays a stark contrast 
between the full width at half maximum (FWHM) in layer I when com-
pared to the lower layers (layers II–VI). FWHM is the width of the 
PDF at half the peak frequency. Specifically, the diameter variance is 
6.24 um in layer I, gradually dropping to merely 0.93 um in layer VI. 
Moreover, the deepest layers have a more prominent peak diameter, 
meaning there is a high frequency of vessels with similar diameters, 
indicating higher uniformity. The boxplots of diameter within each 
layer also reveal that the median is smaller at deeper layers and the 
spread narrows (=lower variance in lower layers). In general, this 
trend seems to reflect a higher degree of order in deeper layers of 
the cortex compared with the surface.

F I G U R E  5 The diameter spectra in the empirical microcirculatory networks as a function of cortical depth of the Kleinfeld cohort 
(E1.1–E4.1). Variability in diameters decreases in deeper tissues as indicated by the boxplots showing the layer-dependent diameter 
distributions in four empirical networks (E1.1, E2.1, E3.1, and E4.1). The spectra (shown for E2.1, in middle column) exhibit much higher 
diameter variability in upper cortical layers (standard deviation of 6.24 and 1.18 μm in layers I-II) than deeper regions (standard deviation 
of ~0.9 μm in layers IV-VI). The more uniform diameter spectra in lower layers may be a factor leading to increased homogeneity in 
hemodynamic properties in the same layers, such as RBC flux and hematocrit. This phenomenon is illustrated conceptually in the right panel 
showing RBC flux variability as a function of cortical depth and is discussed in detail elsewhere.17 In general, there seems to be more order in 
deeper layers of the cortex compared with the surface
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3.2  |  Synthesis of cortical microcirculatory 
networks (=digital twin network)

In order to emulate the angioarchitecture of the cortical circulation, 
we used a staged growth paradigm employing the SampleGenerators 
methodology of the iCNS algorithm as described in part I of this se-
ries.21 The domain dimensions (given in mm ± mm ± mm) and the seg-
ment density for each vessel type served as input to the synthetic 

growth. Sample generators helped to enforce anatomically consist-
ent growth rules at each length scale to render statistically matching 
vessel dimensions, orientations, and connectivity. Each stage oper-
ated with different sample generators, vessel densities, and sets of 
constraints. More details on this implementation and pseudocodes 
are given in Appendix E.

Figure 7 illustrates five main stages required for the synthesis 
of cortical sVANs. The first step begins with a backbone onto which 

Stage Groups available for attachment

Pial arteries Pial arteries

Long penetrating arteries/arterioles Pial arteries

Short penetrating arteries/arterioles Pial arteries

Pre-capillary arterioles Long and short penetrating arteries/
arterioles

Pre-capillaries Pre-capillary arterioles, pre-capillaries

Capillaries Pre-capillaries, post-capillaries

Post-capillaries Post-capillary venules, post-capillaries

Post-capillary venules Long and short penetrating veins/venules

Long ascending veins/venules Pial veins

Short ascending veins/venules Pial veins

Pial veins Pial veins

TA B L E  2 Anatomical grouping used in 
each synthesis stage

F I G U R E  6 Comparison of morphometric properties of empirical and synthetic networks in mouse. Top) The Kleinfeld (KF), middle) Boas, 
and bottom) Dunn cohorts show excellent match between the empirical (stars) and synthetic counterparts (black lines) as reflected by the 
tortuosity, diameter, length, volume, and surface area distributions. (In all PDF spectra, dots—empirical; and lines—synthetic—are almost 
indistinguishable). For a more detailed comparison, two representative networks from each cohort are compared with boxplots, which 
indicate closer similarity between the networks and their digital clones than between networks of different cohorts. The 3D visualization 
of the networks also reveal a high degree of structural similarity between the empirical and synthetic networks. We note that the 
intraspecimen variability among sample networks belonging to the same cohort is larger than the variability between an empirical network 
and its synthetic counterpart. Of further note, many boundary segments in the empirical imaging data sets are severed, creating unrealistic 
dead end connections in hemodynamic simulations. In contrast, all segments in digital sVAN are connected in the entire domain with no 
dangling segments at the boundary or the interior
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segments are added using three stages of tree growth, each gen-
erating vessels of the three distinct types (pials, penetrators, and 
capillaries). These stages mirror the complex anatomy of the micro-
vascular bed with highly structured connectivity following three 
distinct types of vessels: large, lateral pial vessels that convey blood 
across the surface of the pia matter, penetrating vessels that transmit 
the blood from the pials deep into the tissue (which further break 
into long and short penetrators), and an interconnected capillary bed 
comprised of small vessels that join the penetrating arteries to the 
ascending venules. More details on the capillary growth stage can 
be found in Appendix E. The final stage (closure) is used to fuse the 
arterial tree to the venous tree with no gaps as described next.

The network synthesis method offers control over the forma-
tion of highly structured or hierarchical connectivity patterns. 
Specifically, by generating new segments for a new category (or 
stage), their attachment can be restricted to certain groups of prior 
branches; for example, new penetrating vessels can only connect to 
pial vessels. Penetrating arteries cannot connect to the ascending 
venules or pial veins, but it must connect to pial arteries. To con-
trol and track the hierarchical order of new attachments, new seg-
ments are labeled with unique identifiers for each synthesis stage. 
This can be programmatically achieved with an anatomical labeling 
array spanning all arcs in the VAN with each vessel assigned an ana-
tomical group label. For convenience, we list the anatomical groups 
onto which new samples can be attached at each stage of growth 
in Table  2. These groups are also visualized in the middle row of 
Figure 7.

Tissue domain size, segment, and morphological constraints 
were used to synthesize artificial networks with same dimensions, 
vascular density, and hemodynamic properties of the Kleinfeld (KF) 
cohort (N = 100, digital twins). We also fed spectra and domain sizes 
of the networks in the Boas and Dunn cohort as listed in Table 1. 
The network naming convention is listed in Appendix A. One sam-
ple VAN and its digital twin sVAN are shown alongside statistical 
comparison of all VANs and sVANs for each cohort in Figure 6. The 
statistical charts in Figure 6 and Table 3 show excellent agreement 
between the empirical and synthetic data sets.

3.2.1  |  Comparison and analysis

We compared the distribution of diameter, length, surface area, vol-
ume, and tortuosity of the empirical networks with their synthetic 
counterparts. We considered the sVANs in agreement with their 
empirical counterparts because the difference between VANs and 
its synthetic clone was smaller than the intravariability among the 

empirical data sets within each cohort as enumerated in Table 3 for 
the Kleinfeld cohort. The variability between the empirical networks 
and their respective synthetic clones (the synthetic-empirical devia-
tion) is significantly smaller than the deviation between different 
networks of the Kleinfeld cohort (empirical-empirical deviation).

We found the segment-by-segment measurements of structural 
properties relevant to hemodynamic simulations (length, diam-
eter) show excellent agreement between the empirical and syn-
thetic networks in the KF (Kleinfeld) group (E1.1–E4.1), Boas group 
(EB1.1–EB5.1), and Dunn group (ED1.1–ED4.2) as seen in Figure 6. 
The surface area (SA) and volume (V) spectra reflect the joint agree-
ment in length and diameter for each segment. In other words, SA 
and V spectra reflect simultaneous match in both length and di-
ameter. We note that to achieve this high degree of congruency in 
morphological parameters for these cortical subsections, we tuned 
properties of the network after the growth stages are complete, to 
add curvature to the capillaries (to reflect the naturally tortuous 
nature of the imaged vessels) and the diameter (to match diameter 
peaks surrounding the imaging threshold) as listed in Appendix D. 
The final length, tortuosity, and diameter spectra are reasonably 
close as seen in Figure 6 and listed in Table 3. The networks were 
compared by measuring the value of the CDF at a frequency of 0.5. 
This deviation is normalized by the empirical value at the same fre-
quency to give the specific deviation.

This specific frequency shows excellent alignment between the 
synthetic networks and their empirical clones (with detailed statis-
tics between CDF of synthetic-empirical listed in row 1 of Table 3) 
when compared to the larger error between the different empirical 
clones (empirical-empirical row 2 of Table 3). A preliminary analy-
sis of hemodynamic simulations shows that synthetic networks are 
equivalent in blood flow and total flow resistance across the entire 
range of perfusion pressures as detailed in Appendix G. A detailed 
analysis of hemodynamic states in the microcirculation is beyond the 
scope of this paper, more details on quality of hemodynamic simula-
tions using synthetic networks can be found elsewhere.17

3.3  |  Network synthesis of the MCA 
territory and the whole mouse brain

In Figure 7 bottom row, we also illustrate the growth of the vascu-
lar network fed by the anterior cerebral artery (ACA) as one of the 
stages to synthesize the murine hemisphere. We define the murine 
cerebral hemisphere as the brain regions supplied by the anterior 
cerebral artery (ACA), middle cerebral artery (MCA), and posterior 
cerebral artery (PCA) where each territory is synthesized using the 

Specific deviation at CDF frequency 0.5

Diameter (%) Length (%) Volume (%)
Surface area 
(%)

Synthetic-empirical 1.25 ± 0.57 8.91 ± 4.1 16.2 ± 4.0 13.36 ± 3.6

Empirical-empirical 11.08 ± 11.5 10.74 ± 8.9 34.87 ± 29.9 21.86 ± 16.0

TA B L E  3 Comparative variability 
between sVANs and VANS of the 
Kleinfeld cohort
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same process as the ACA territory but covering different regions 
of the cortex. All arterial territories are finally drained through the 
veins of the superior sagittal sinus (SSS).

The morphometric data of the cortex and main arterial branches 
(=backbones) for hemisphere growth were reconstructed from im-
ages collected through μCT27 and a mouse atlas.28 More information 
on the data acquisition and backbone reconstruction can be found 
in part I of this sequence.21 First, we reconstructed the pial surfaces 
of two murine cortices from neuroimages27,28 generating STL files. 
The arterial territories (ACA, MCA, and PCA) were labeled manu-
ally using ANSYS ICEM (Canonsburg, PA) and an open-source brain 
atlas.28 We set the vessel density equal to the microcirculation data 
in the KF data sets. The synthesis of the murine ACA territory also 
serves as a demonstration how diverse physiological data from sev-
eral imaging sources across different relevant length scales (here, 
μCT imaging for the large vessels and multiphoton imaging for mi-
crovessels) can be seamlessly integrated with the iCNS algorithm to 
create a more complete structure that approximates murine cerebral 
circulation at the organ-wide scale. The synthesis took less than 14 

CPU hours, and the runtime could be drastically reduced by using 
hashing techniques to accelerate near-neighborhood segment finding. 
This was not necessary for the synthesis of the mouse hemisphere.

3.3.1  |  Anatomical variations in hemisphere

The hemisphere has unique anatomical characteristics that are 
not observed in the smaller cuboid cortical subsections created in 
Section 3.2. For example, the hemisphere has three main arterial ter-
ritories (=three arterial trees) draining through a single venous tree 
(=one venous tree). Additionally, the arterial territories (ACA, MCA, 
and PCA) are supplied with blood from the circle of Willis (which is 
not a tree, but a ring-shaped loop). Finally, the cortical subsections 
were generated in vertically aligned structured Cartesian meshes.

To account for these geometrical features, the iCNS algorithm 
synthesized each tree independently. Pial vessels were synthesized 
while adhering to the triangulated surface mesh representing the 
cortical surface (as described in part I of this series), but each sample 

F I G U R E  7 Visualization of five stages of synthesizing a complete cortical microcirculatory network in mouse. Top row shows the gradual 
evolution of small cortical subsection of similar size to E1.1. Second row shows color coding of anatomical group labels used during the 
generation of the sVAN. Bottom row illustrates stages of growing the LACA territory during the construction of the mouse hemisphere. 
During each stage of growth, new segments are only allowed to connected to specified anatomical groups as outlined in Table 2. The stages 
show (from left to right) the following: The backbone forms the initial structure onto which the pial network is grown. The penetrating 
vessel terminals are then generated perpendicular to the pial surface and attached to the exposed pial terminals. Next, the capillaries (pre-
capillary arterioles, pre-capillaries, capillaries, post-capillaries, and post-capillary venules) fill the space until the desired number of vessels is 
reached. In the capillary stage, it is possible to relax the volume optimization principle to place the optimal bifurcation point without rigorous 
optimization. In the final stage, closure between the arteries and veins connects all open terminals from the arterial tree to the venous tree 
and all the venous terminals to the arterial tree as described in Section 2.3
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F I G U R E  8 Visualization of the twelve (n = 12) synthetic mouse brains (right hemisphere) generated with the iCNS algorithm. Seven 
networks were synthesized using the cortical reconstruction for mouse 1 (SH1.201-SH1.207). Five networks were generated for a different 
second specimen, mouse 2 (SH2.201-SH2.205). The color reflects pressure from high at the inlets (red =120 mmHg) through a full capillary 
bed to a venous drainage (blue =5 mmHg). Blood flow simulations were performed for all twelve samples with pressure reported in all 
networks (axial view) and SH1.201-SH1.206 in sagittal view. Hematocrit distribution is depicted in SH1.207 and SH2.201-SH2.202 (sagittal 
view). Bulk blood flow is also shown for samples SH2.203-SH2.205 in the sagittal view
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must only be drawn from triangles corresponding to the anatom-
ically correct vascular territory (ACA, PCA, or MCA). Hemisphere 
closure was achieved with the single bifurcation closure. Although 
this is not a limitation of the proposed methodology, morphomet-
ric differences for different cortical regions were not considered in 
this first demonstration. We executed the synthesis algorithm mul-
tiple times for each of the two mouse brains27,28 to create a total of 
twelve (12) artificial specimen as visualized in Figure 8. An inventory 
of networks and the naming convention is given in Figure  8 with 
visualizations performed using specialized in-house Walk-In Brain 
software.26,36 Sample whole mouse circulation networks can also be 
downloaded from a network repository (instructions and links can 
be found our public repository37).

3.4  |  Preliminary simulation of blood distribution 
patterns for the entire brain

These massive synthetic networks that encompass an entire murine 
cerebral hemisphere may serve for numerical investigation of the en-
tire cerebral circulation in mouse. We have previously shown10,12,17 
that simulations at the whole-organ scale may reveal trends that are 
harder to identify in smaller cortical subsections. The circulatory 
networks spanning the entire hemisphere are ideally suited for ex-
ploring global trends across whole-brain regions. Simulation meth-
ods described elsewhere17 enabled prediction of blood pressure, 
blood flow, and red blood cell content (ie, hematocrit) of every vessel 
in the hemisphere network in less than 30 CPU minutes and 13.5 GB 
of memory, with outcomes of blood flow, blood pressure, and hema-
tocrit distribution shown in Figure 8. The successful simulation runs 
demonstrate that our approach makes massive whole-brain simula-
tions tangible for a standard desktop workstation.

We observed global trends, in brief: (a) The main pressure drop 
occurs in the capillary bed, (b) the pial vessels convey blood along 
the surface so that vessels closer to the circle of Willis carry more 
blood than more distal pials in addition to supplying blood vertically 
down into the cortex to their penetrating arteries, (c) the red blood 
cell density varies as a function of depth (denser RBCs at deeper cor-
tical layers), and (d) the cortical blood supply is highly heterogeneous 
(depth dependent) and cannot be represented well by a unique aver-
aged value. These findings are in agreement with our previous work 
simulating the cortical subsections and validated with a model of the 
MCA territory in mouse.17

3.4.1  |  Boundary condition assignment

Additionally, one of the most impactful assumptions in hemody-
namic simulations is the assignment of boundary conditions at ter-
minal nodes of the vascular network. In traditionally reconstructed 
vascular network models (open arterial trees with no closure or sev-
ered capillaries), one must assign numerous (hundreds to thousands) 
unknown pressure or flow values at the distal terminals, which are 

generally not directly measurable and exhibit a high degree of vari-
ability. In contrast, due to our fully connected synthetic vascular 
networks, hemodynamic simulations for the entire circulation in a 
mouse brain hemisphere require only four boundary assignments at 
the basilar artery, at the two Carotid arteries, and at the superior 
sagittal sinus vein. Blood flow or even blood pressure in the basi-
lar and carotid arteries has been measured extensively across many 
species,4,38,39 thus making our boundary conditions at these macro-
scopically observable inlets more reliable than previously needed as-
sumptions for the distal tree nodes that cannot be reliably measured.

4  |  DISCUSSION

In this series of papers (part I,21 and part II, this manuscript), we em-
phasized the need for microvascular closure, which forms a physi-
ologically functional connection between the arterial and venous 
blood flow. A key innovation of this manuscript is our proposed 
closure algorithms to create artificial microvascular beds that match 
hemodynamic properties of in vivo specimen. Our double bifurca-
tion closure was found to provide the most realistic sVANs as a result 
of its ability to control segment length, orientation, and tortuosity. 
In the capillary growth stage, it is possible to relax the volume opti-
mization principle to place the optimal bifurcation point without the 
need for rigorous optimization, which can become time-consuming. 
Closure fuses the arterial tree to the venous tree with no gaps. The 
microcirculation thus comprises segments created and those in cap-
illary growth stage together will all closure segments. It is worth 
noting that closures were previously achieved using Voronoi tes-
sellation,10,20 homogenization without discrete capillaries,7 or short 
circuiting segments.18 To the best of our knowledge, our algorithm is 
the first closure that connects arterial and venous tree to a microcir-
cuit, which simultaneously matches several morphometric proper-
ties essential for hemodynamic simulations (specifically diameters, 
tortuosity, and vessel density) of real capillary beds.

Multiphoton data were collected from three separate neuroim-
aging laboratories and served as three cohorts (named after the lab-
oratories they were collected from: Kleinfeld (KF): N = 4, Boas: N = 5, 
and Dunn: N = 6), which represent a cross section of available mi-
croanatomical data about the murine cortical blood supply derived 
from state-of-the-art neuroimaging and reconstruction protocols. 
The statistical properties of these cohorts were analyzed in detail to 
obtain the relevant anatomical parameters necessary to synthesize 
hemodynamically equivalent networks (sVANs). Hemodynamically 
relevant properties (listed in Table 1) including branching order, con-
nectivity, vessel caliber, and tortuosity guided our iCNS algorithm for 
creating sVANs with similar blood perfusion to their experimentally-
derived VAN counterparts.

We then applied the iCNS algorithm, complete with a novel cap-
illary closure to generate sVANs with matching critical topological 
aspects for all three cohorts of VANs from the murine vibrissa pri-
mary sensory cortex. We demonstrated that a digital twin of an ex-
perimental VAN can be constructed by using its topological profile 
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described by a small number of input statistics (cortical tissue vol-
ume, segment density at each hierarchical level, tortuosity, and di-
ameter spectra). We also showed here, for the first time, how the 
cumulative density functions of key hemodynamic parameters, such 
as length, diameter, tortuosity, and vessel count can be matched to a 
desired degree of accuracy.

The versatility and robustness of the iCNS algorithm were ex-
emplified by synthesizing a large number (N = 110) of sVANs that 
matched relevant morphometrics of their experimental counter-
parts in three different cohorts of multiphoton image data. The devi-
ation between the sVANs and their respective original VAN template 
was, in fact, found to be smaller than the deviation between any 
two experimental samples from the same cohort. With respect to 
the targeted hemodynamically relevant properties (diameter, length, 
surface area, volume, and tortuosity), sVANs and experimental VANs 
were found to be structurally similar. Since simplified continuity and 
momentum equations typically used for large-scale hemodynamic 
simulations10-12,17,18,21,40 are only sensitive to network connectivity, 
segment diameter, and length, blood flow predictions based on these 
simplified models will give similar results, at least in a statistical sense 
as we showed previously.17 We also conducted hemodynamic simu-
lation studies (see Appendix G) that demonstrated similar values of 
blood perfusion in synthetic and empirical networks over the entire 
range of physiological pressure drops across the microcirculation. A 
more detailed discussion and results of hemodynamic equivalence 
studies can be found in Appendix G. This suggests that digital twins 
(sVANs) can serve as surrogates for experimentally acquired VANs in 
blood flow simulations for the cortical microcirculation.

Moreover, these anatomically sound circulatory networks can 
serve as a ground truth or a phantom model for validating homog-
enization techniques7,20 or reconstruction techniques.3,24,25,41 
Homogenization can be a useful tool for simplifying massive mi-
crovascular computations, but its validation can benefit from com-
parison with a more complete model presented here to ensure that 
critical trends are not lost by diverse homogenization assumptions. 
Synthetic networks may also serve as imaging phantoms for devel-
oping reconstruction techniques and can be an excellent method for 
creating a large database of phantoms for training neural network 
algorithms for centerline and diameter reconstruction.

4.1  |  Inter-cohort variability

Detailed statistical analysis of the data indicated that the intraco-
hort variability between VAN samples within the same cohort was 
relatively small, attesting to the high quality and reproducibility of 
state-of-the-art neuroimaging and vascular reconstruction tech-
nologies used by each laboratory. The significant differences in size 
and cortical depth penetration observed between different cohorts 
affected global network properties (such as number of segments, 
total surface area of the endothelial cell layer forming the blood-
brain barrier, and others). Moreover, we also observed significant 
variability in sample size-independent properties such as segments 

density, blood volume fraction, and the diameter spectra. These 
variances between morphometric data from different cohorts in dif-
ferent laboratories can be explained by fundamental differences in 
the experimental protocol. For example, ex vivo imaging is known 
to have smaller vessels than in vivo counterparts because the pres-
sure maintained by the living brain is disrupted and vessels begin to 
collapse. In addition to the differences in imaging protocols, more 
variability is introduced by the unique choices made by each team 
during image reconstruction steps for generating segment connec-
tivity, centerline, and diameter information. For example, the diam-
eter information is interpreted by the reconstruction algorithms due 
to thresholding settings that delineate the vascular and extravascu-
lar spaces in the images. In effect, vessel diameters were found to be 
the most uncertain of the morphometric parameters.

4.2  |  Penetrators

Detailed visual and statistical inspection of the cortical angioarchi-
tecture revealed the scarcely characterized presence of two types of 
penetrating vessels emanating from the cortical surface and diving 
perpendicularly down into deeper tissues. We have termed these 
two groups: long penetrators with a branching pattern resembling in-
verted trees reaching into the deepest cortical layers (layers V and 
VI) and short penetrators with a bush-like structure feeding capillar-
ies in the top layers (layers I–III). These patterns of long and short 
penetrators were visible in the penetrating arteries/arterioles and 
were also seen in ascending veins/venules.

4.3  |  Depth Dependence

We also discovered an increase in vessel diameter homogeneity in 
lower layers. This trend was evident through an observed smaller 
standard deviation of diameters in the lower layers than in lay-
ers closer to the cortical surface as seen in Figure 5. Figure 5 also 
shows a smaller mean diameter and tighter variance in lower layers 
compared with the vessels closer to the cortical surface. We have 
previously reported the simulation-based observation of more ho-
mogeneous microflow (=less variability of hematocrit) in deeper lay-
ers compared with flow patterns closer to the surface.17 We also 
inferred that hematocrit increases in blood vessels reaching deeper 
cortical tissues. The implication of a higher state of order in deeper 
cortical layers was later experimentally verified.42 The trend of more 
uniform diameter distributions in the deeper cortical layers reported 
here supports the theory of layer dependence for hemodynamic 
states in the cortical circulation.

4.4  |  Expansion to larger structures

The ability to emulate macro-, meso-, and microvascular networks 
(guided directly by image data or indirectly by morphometric 
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statistics) enabled us to generate massive circulatory networks 
that substantially extended the limited field of view observed in 
neuroimaging windows. For example, Figure  1 shows a massive 
artificial cortical slab with complete pial and subcortical circula-
tion spanning 3 × 3 × 1.2 mm3. Blood and oxygen exchange sim-
ulations33 conducted on such large structures can be helpful in 
quantifying hemodynamic and metabolic functions without the 
need to impose uncertain boundary assumptions. Ample distance 
to domain limits is essential for exploring inherent flow patterns 
as a function of vascular topography without the risk of secondary 
effects attributable to choices of boundary conditions or simplify-
ing assumptions.

We successfully integrated data from multiple sources (multi-
photon, μCT, and mouse atlases) to inform the iCNS algorithm for 
generating twelve cerebrovascular networks spanning the entire 
murine cortical hemisphere. With these massive organ-wide net-
works, we can begin to investigate the vascular reserve, collateral 
reperfusion after a stroke, and drug residence time. These investi-
gations are difficult in the smaller VANs or sVANs because the ma-
jority of the vascular structure (the VANs span ~1–2% of the cortical 
circulation in mouse) is missing, leading to skewedness of simulation 
results or invisible trends due to nearby artificial boundaries.

4.5  |  Outlook on the human circulation

A main thrust of neurovascular research aims at elucidating funda-
mental perfusion and control principles in normal and pathological 
states of the human brain. Unfortunately, it is not feasible to perform 
invasive imaging or to conduct exhaustive experimentation on hu-
mans as can be performed in mice. It is also known that the human 
brain has substantial structurally differences from the mouse brain, 
making the intuitive extrapolation of findings in mouse to humans 
unreliable. To overcome this impasse, data acquired from animal 
models in combination with synthetic networks trained and vali-
dated with mouse neuroimaging data could serve as a digital bridge 
for addressing questions about human brain function. In fact, one 

of the major differences between the mouse and human brains is a 
substantial size difference, which is compounded by additional geo-
metric complexity (deep and numerous gyrations). In comparison, 
the cortical volume (gray matter) in mouse is estimated at ~150 mm3 
from our reconstructions27,28 compared with ~458,000 mm3 in the 
healthy adult human brain,33,43 which is roughly a 3,000-fold in-
crease in size by volume. Additionally, the vascular density of the 
murine cerebrovasculature17,22 is ~11,474 nsgm/mm3 compared with 
8800 nsgm/mm3 in humans.44 Assuming these volumes and vascu-
lar densities as a rough basis would give 1.72  M segments in the 
whole mouse brain and an approximate target number of 4.03B seg-
ments for the human brain. The size differences between mouse and 
human brain can be appreciated in Figure 9, which shows a synthetic 
mouse calculation in comparison with a prototype of the cortical 
blood supply in a human brain synthesized with the iCNS algorithm 
and methods described here for mouse.

We have input morphometric data from humans10,44,45 into the 
network synthesis of the iCNS framework. As a first step, we used 
anatomical reconstructions for cortical surface and main arterial 
trees in human subjects5,46,47 to generate a prototype of the cere-
bral circulation of the complete arterial tree in humans. The resulting 
synthetic human arterial network depicted in Figure  9 shows the 
CoW, the ACA, MCA, and PCA of the left hemisphere in a normal 
human subject giving rise to pial surface arteries and penetrating ar-
teries/arterioles. Surface growth21 was successfully applied to gen-
erate pial vessels along the highly tortuous gyrations of the human 
cortex. Penetrating arteries/arterioles on the cortex were created 
with SampleGenerators reproducing patterns seen in humans.44,45 
Such an artificial human circulation network could then be useful for 
comparing hemodynamic states and oxygen delivery in healthy and 
diseased human brains.

While several other groups have made valuable contributions to 
the synthesis of vascular structures for the humans,6,7,20 an anatom-
ically consistent, realistic capillary bed has never been built at the 
human brain scale. The results reported in the current manuscript 
mark the largest circulatory networks ever created that delineate 
every blood vessel at the macro-, meso-, and microscale including 

F I G U R E  9 Extension of vascular synthesis methodology from the mouse to the human brain. The iCNS algorithm was applied to a 
human cortical surface reconstruction for growing a network of the main cerebral arteries including the circle of Willis, the MCA, PCA, and 
ACA reaching down to the level of the distal pial vessels. This result shows that the same principles of synthesis and staged growth used in 
the mouse hemisphere were successful in producing fully closed vascular structures for the human brain
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the full capillary bed with closure, thus suggesting the readiness 
of the proposed synthesis methods for the building of a full human 
brain.

4.6  |  Limitations

4.6.1  |  Space filling

While we believe that our artificial VANs approach hemodynami-
cally equivalence of their empirical counterparts, we realize that 
some differences in space filling properties of the capillary bed still 
exist. For example, traditional CCO optimization generates planar 
bifurcations with straight segments. In experimental VANs, many 
bifurcations are not planar and vascular segments, especially small 
microvessels, twist and turn. We have overcome this shortcoming 
in part by imposing statistically equivalent tortuosity, yet identical 
tortuosity does not guarantee equivalence in the curvature and ori-
entation of segment paths relative to each other.

4.6.2  |  Alignment bias

We also observed that the angles between the main segment axes 
and the cortical surface (data shown in Appendix F), although seem-
ing random to the naked eye, have an orientational bias. While 
our synthesis partially captures some of this preferred alignment 
(vertical predominance in the orientation of penetrating arteries 
by staged growth of vertical penetrating arteries/veins), synthetic 
branches have a higher degree of randomness than the empirical 
structures at the microlevel. The preferred vertical-horizontal align-
ment in empirical VANs compared with the more random orientation 
of the synthetic segment would affect solute exchange simulations 
such as oxygen extraction. Since our aims here were hemodynamic 
simulations, not mass exchange, we did not tackle this issue in this 
paper yet. Limitations concerning space filing and alignment biases 
require further research.

4.6.3  |  Adaptations to other brain regions and 
other organs

The synthesis of circulatory networks for an entire mouse hemi-
spheres requires statistical information about the spatial variability 
of morphometric quantities across different functional cortical re-
gions. Since our reconstructed imaging data concerned the vibrissa 
primary sensory cortex, we used its metrics and parameters for the 
synthesis of the hemisphere network. This is admittedly a simplifi-
cation, which leads to a uniform topological profile across the en-
tire cortical surface, lacking spatial heterogeneities that is known to 
occur in different brain regions. This spatial variability can, however, 
be easily incorporated into the iCNS algorithm as stage input for a 
specific region. Thus, it is not a limitation of the methodology, rather 

a limitation of the availability of reconstructed neuroimaging data 
across the entire cortex. As more extensive reconstructions from 
brain-wide neuroimaging become available,28,48,49 the metrics ac-
counting for topological differences between diverse functional 
brain regions can be used as input to the iCNS algorithm and en-
forced during synthesis.

We believe that in principle, volume minimization is sufficient 
to build physiological vascular structures also for different organs 
such as the retina, the heart, and the blood supply of lung or muscle 
tissue. Our algorithm has methods for considering additional phys-
iological constraints in order to satisfy the functional need for the 
blood supply needed in the specific organ. Our experience teaches 
that functional similarities give rise to similar network morphometry, 
which does not necessarily encompass an entire organ. For example, 
there is similarity in the coronal arteries and the pial arterial surface, 
both delivering blood along a surface. However, the microanatomi-
cal differences between the heart (muscle) and the neuronal archi-
tecture (layered neurons and glia in the cortical columns) lead us to 
speculate that the microcapillary properties are not identical.

5  |  CONCLUSIONS

The demonstrated ability to synthesize artificial circulation models 
of the whole mouse brain enabled hemodynamic simulations of cer-
ebral blood perfusion and metabolism as a function of network to-
pology over all relevant length scales (arteries, capillaries, and veins). 
Our anatomically accurate microvascular closure matches hemody-
namically relevant morphometric spectra and parameters, which, as 
far as we know, has never been accomplished before with classical 
constrained constructive optimization or other synthesis methods. 
This algorithm enabled the synthesis of large portions of the cortical 
circulation matching desired morphometric input data from different 
imaging sources, thus creating a more comprehensive, connected, 
and quantitative picture of brain function.

Pathological alterations may impose additional constraints on 
network construction. The ability to create synthetic structures that 
mimic normal hemodynamic states is an important intermediate goal 
that we believe has been achieved to a large extent in this set of 
two papers. For the study of neurological and cerebrovascular dis-
ease (CVD), two questions arise. How do pathologies alter structural 
network properties? Second, which functional biological deviations 
does a specific CVD induce? We envision that structural and func-
tional deviations from the normative case can be systematically and 
conveniently studied with synthetic networks. For example, reduc-
tion in vascularization can be controlled by lowering the segment 
count in the respective growth stage. Alternatively, network models 
for normal specimen can be thinned to match CVD characteristics. 
The highly structured anatomical segment addition logic and ability 
to track hierarchical segment labels during the growth stage offer 
a systematic handle on segment hierarchy in synthetic networks 
that empirical data sets do not possess. Moreover, other subtle pa-
rameter changes, such as angular orientation or tortuosity, can be 
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manipulated (eg, tortuosity parameter, α, increases segment arc 
length without altering nodal positions). Functionally, hemodynamic 
simulations that mimic microinfarcts or temporal occlusions caused 
by leukocytes can easily be specified by manipulating segment re-
sistance directly or via the changing diameter relations. The critical 
benefit in the deployment of synthetic networks stems from the 
ability to artificially create and simulate network effects due to sub-
tle highly controllable changes. This constitutes a viable compliment 
to deriving insights by statistical analysis of large number of empir-
ical VAN from different animal or human specimens. Comparative 
studies in synthetic networks with controllable changes provide 
a new instrument to the scientific and systematic investigation of 
cerebrovascular disease.

Mechanistic brain-wide computations are becoming an ex-
ploratory tool for testing and validating hypotheses for underlying 
functional mechanisms behind cerebral autoregulation, collateral 
reperfusion after stroke, or pathologies such as hypoxia-induced 
neurodegeneration associated with old age. Our approach over-
comes the need to make uncertain assumptions about hemodynamic 
states at the microscale. Hemodynamic and metabolic simulations 
for the brain are expected to better elucidate control mechanisms 
and metabolic regulation for the entire organ across all length scales. 
Our whole-brain scale vascular model presented here is a significant 
step toward whole-brain hemodynamic simulations.

6  |  PERSPEC TIVE

Microcirculatory network data were acquired with state of the art 
imaging techniques.  Morphometrics served as input for the creation 
of synthetic cortical blood supply networks for the entire mouse 
brain with an outlook on synthetic circulatory networks for humans.
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APPENDIX A

IMAG ING DATA ACQUISITION
Kleinfeld cohort (KF). Four murine subjects had undergone post-
mortem perfusion by a peristaltic pump at a rate of 1  ml/min to 
fix the vascular structure postmortem. Once curation was com-
pleted, the brain was removed and imaged in a significant section 
(~1  ×  1  ×  1  mm) of the vibrissa primary sensory cortex by two-
photon laser scanning microscopy (2PLSM).22 The vessels were 
subsequently reconstructed into a vascular network graph with cor-
responding diameter information. Each vessel fell under one of the 
following labels: pial arteries, penetrating arterioles, capillaries, as-
cending venules, or pial veins. The automated labeling was informed 
by vessel size, depth, and Strahler order.24 In the case of capillar-
ies, a diameter threshold of 6 µm was employed. All protocols were 
approved by the Institutional Animal Care and Use Committee at 
University of California, San Diego. More details on segmentation 
can be found elsewhere.22,24

Boas cohort (Boas). Five C57BL/6 mice (male, 25–30  g, n  =  5) 
were anesthetized by isoflurane (1%–2% in a mixture of O2 and 
air) under constant temperature (37°C). A cranial window in the 
dura was removed and sealed with a 150-μm-thick microscope 
coverslip. During the experiments, a catheter was used in the fem-
oral artery to monitor systemic blood pressure and blood gases. 
The catheter also administered the two-photon dyes. During the 
measurement period, mice breathed a mixture of O2 and air under 
the 0.7–1.2% isoflurane anesthesia. The cortical vasculature was 
imaged using 600 × 600 × 662 μm stacks with 1.2 × 1.2 × 2.0 μm 
voxel sizes under a 20X Olympus objective (NA=0.95). The vas-
culature was highlighted by labeling the plasma with 500  nM of 
dextran-conjugated fluorescein (FITC). All experimental proce-
dures were approved by the Massachusetts General Hospital 
Subcommittee on Research Animal Care. More details on segmen-
tation can be found in.4

Dunn cohort (Dunn). In the two-photon laser system, a titanium:sap-
phire (Ti:S) oscillator (Mira 900, Coherent) beam is steered to a 

pair of galvanometer scanners (6125HB, Cambridge Technology) 
driven by servo driver amplifier boards (671215H-1HP, Cambridge 
Technology). A Keplerian telescope beam expander consisting of 
a B-coated scan lens (f = 80.0 mm, AC254-080-B, Thorlabs) and 
tube lens (f = 200.0 mm, LA1979-B-N-BK7, Thorlabs) is used to fill 
the back aperture of the microscope objective (XLUMPLFLN20XW 
0.95 NA or XLPLN25XSVMP2 25X 1.0 NA, Olympus). Excitation 
and emission paths are separated with a 775 nm cutoff dichroic 
mirror (FF775-Di01-52x58, Semrock). Fluorescence is epi-
collected, transmitted through either a 510/84 bandpass filter 
(FF01-510/84-25, Semrock) or a 609/181 bandpass filter (FF01-
609/181-25, Semrock), and detected by a photomultiplier tube 
(H10770PB-40, Hamamatsu Photonics). Image acquisition was 
controlled using custom software (LabVIEW, National Instruments), 
and image frames were collected at a 512 × 512 pixel size. Image 
stacks were collected at a z-resolution of 5 µm, and three frames 
were averaged from 0 to 200 µm cortical depths, five frames from 
200 to 500 µm, eight frames from 500 to 700 µm, and twelve 
frames beyond 700 µm. All mice specimens imaged by Ti:S were ex-
cited at λex = 800 nm. More details on segmentation can be found 
elsewhere.25

APPENDIX B

S TATIS TIC AL ANALYSIS OF CEREBROVA SCUL AR 
ANG IOARCHITEC TURE

Image invariant segmentation by splines
Image segmentation of multiphoton image data produces cylindri-
cal segments of arbitrary length depending on image thresholds and 
algorithms used (see4,24,25,46,47). Unfortunately, this means that seg-
ment count and spatial partitioning in reconstructed networks are 
not standardized, meaning the raw segment count is not a suitable 
basis for morphometric analysis. Furthermore, the incidents of prop-
erties as a function of segment count will be sensitive to the num-
ber of segments, making this an unsuitable method for comparison. 
Instead, we encoded a unique and modality invariant segmentation 

Empirical data set 
name Synthetic data set name Volume (mm3) Cohort

E1.1, E2.1, E3.1, E4.1 S1.201–S1.225, 
S2.201–S2.225,

S3.201–S3.225, 
S4.201–S4.225

2.156 ± 0.789 Kleinfeld

EB1.1, EB2.1, EB3.1, 
EB4.1, EB5.1

SB1.201-SB1.205 0.081 ± 0.003 Boas

ED1.1, ED2.1, ED3.1, 
ED3.2, ED4.1, 
ED4.2

SD1.201-SD1.206 0.136 ± 0.024 Dunn

-- S3 × 3.201 9.0 ± 0.0 3 × 3 × 1.2 mm3

EH1.1, EH2.1, EH3.1, 
EH4.1, EH5.1a 

SH1.201-SH1.207,
SH2.201-SH2.205

83.5 ± 9.1 Hemisphere

aThe empirical hemisphere networks are reconstructed from images as described in part 1.1 

TABLE A1 Naming convention of 
synthetic murine circulations matching 
empirical VANs
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by grouping all raw segments between any two bifurcation points 
into a single spline segment (termed a spline). We propose using 
splined segments, each of which encompasses the string of cylinders 
that connects two adjacent bifurcations. Thus, splines reflect all cy-
lindrical segments that are in-series (they act as in-series resistors in 
the blood flow equations). Since the number of bifurcation points 
and their connectivity are unique regardless of reconstruction 
method, after conversion to splines, two networks are reconstruc-
tion method-independent and can be compared to one another.

Representation of spline data information
Once the vascular network has been converted to splines, topologi-
cal characteristics (diameter, position, length, etc.) for each spline 
were calculated and recorded. We calculated the normalized PDF 
and CDF of each property including length, diameter, surface area, 
volume, and tortuosity. We average the small variations between 
cylinders of the same spline to get a single diameter value for the 
spline. We also calculated cumulative network statistics of segment 
density, total intravascular volume, and volume fraction.

APPENDIX C

RECURSION REL ATION FOR THE SEG MENT ADDITION
The iCNS growth principles (segment addition through CCO) gener-
ate realistic tree-like structures but with the drawback that all syn-
thetic segments are represented as straight cylinders. In contrast, 
in vivo microvascular VANs have mostly curved segments with tor-
tuosity larger than unity, 𝜏 > 1. Furthermore, the smooth diameter 
spectra generated by balancing the tree during iCNS may not re-
flect the high occurrence of capillaries with diameters near the im-
aging threshold. When making our synthetic clones, characteristics 
of the VANs should be preserved. To match the naturally tortuous 
segments, we chose to modify the aVAN splines by adding tortuos-
ity (for details, see11) until the desired length and tortuosity spectra 
matched. In the aVANs, we also chose matched the uneven diameter 
spectra by directly adjusting some segment diameters. To identify 
how much to change each spline, we used an unsupervised spectrum 
matching method as detailed in Appendix D with accompanying de-
tails regarding when to use this matching technique.
We derive the mathematical framework of iCNS for generating 

vascular trees by segment addition that minimized the tree volume, 
while satisfying hemodynamic blood flow constraints as summarized 
by System (2): 

where, V is the vascular tree volume, x is the vector of unknown bi-
furcation coordinates, A (�, �) is the diagonal resistance matrix, C1 is 
the connectivity matrix, q is bulk blood flow, and p is blood pressure. 

In the blood flow problem, p are desire perfusion pressures, and q 
are known inlet or outlet flows. The decision matrix D can be used 
to create a single compact formulation for Dirichlet (pressure, p) or 
Neumann (flux, q) boundary conditions. For more details on the ma-
trix formulations, see.38,39 The solution of the optimization problem 
gives the optimal position � and � for the bifurcation point within the 
bifurcation plane.
Under the assumption that all terminal nodes discharge equal 

amounts of flow at identical terminal pressure potentials, a tree with 
given segment geometry (=positions are set for all bifurcation, inlet, and 
outlet nodes) will have all diameters recursively computed as described 
here. The root segment caliper, d0, can be uniquely determined by the 
desired perfusion flow rate, q, and perfusion pressure drop between 
inlet arterial pressure and distal terminal pressure, described by the Δp 
term as in eq. (3). All other segment calibers in the entire network can 
then be expressed as a function of the root diameter as in eq. (4). At 
each bifurcation, segment diameters follow from Murray's law, eq. (5), 
and diameter ratios � i and � j, eq. (6). The diameter ratios depend only on 
reduced resistances, �k, which are functions of segment lengths and the 
discharge capacity, Nk, the subtree supplied by a given segment as in 
eq. (7). By using these equations, matrix inversion for the computation 
of hemodynamic constraints implying blood flow and pressure fields is 
avoided. Solving the flow problem constraints using matrix inversion 
repeatedly for every segment addition during the synthesis would cer-
tainly render this approach computationally intractable.

where 

APPENDIX D

MATCHING CHAR AC TERIZING THE TOPOLOGY OF A 
NE T WORK
In the main manuscript, we describe synthetic networks that match 
the hemodynamic profile of image-derived counterparts. We used 
a post-processing step executed after synthesis completion to fine-
tune segment tortuosity and diameter spectra to match the VANs. 
The process to characterize a vascular network is as follows:
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1.	 Create splines by agglomerating straight segments between 
bifurcations.

2.	 Calculate and record the diameter, length, and tortuosity CDFs 
from the empirical aVAN and corresponding VAN (note, a direct 
CDF can be inserted in lieu of a VAN CDF if one is available)

3.	 Cycle through the segments in the aVAN, modifying each seg-
ment in the synthetic network to match the corresponding seg-
ment in the empirical network. If desired, the CDFs can be binned 
to match the synthetic network to any spectrum regardless of 
divisions.

Unsupervised matching of topological spectra
To begin, we assume the two normalized CDFs of the VAN and aVAN 
do not match, such as the tortuosity differences between the aVAN 
(full of straight segments) and the experimental VAN (with naturally 
curved segments). Here, we use the example of length, but the the-
ory works for any segment property. An example of two spectra that 
do not match can be seen in Figure D1.
The goal of this algorithm is to modify the aVAN segments so that 

the new aVAN CDF matches the corresponding VAN CDF. A natu-
ral first approach of how to modify the segments in the aVAN is to 
adjust all vessels by the same amount; for example, making all seg-
ments 20% longer. While this is a reasonable approach, the differ-
ence between the two CDFs is not a fixed rate, but rather, it varies 
throughout the range of length. For example, the value (x-position) 
of the first representative point (black circle) in the CDF is 1.3 μm for 
the aVAN and 3.1 μm in the VAN, which requires the aVAN value of 
1.3 to be multiplied by a factor of α = 2.385. The second point needs 
to modify the aVAN value of 1.8 μm by α = 3.20 to achieve the VAN 
value of 4.5 μm. Because the two values of α do not match (α = 2.385 
vs α = 3.2), a constant value of α is insufficient. For the best match 
between the aVAN and the VAN counterpart, we propose selecting 
a series of representative points along the CDF, calculating the value 
of α to match all representative points, and linearly interpolating the 
value of α for all other points in the CDF (=points that lie between 
the representative points).

We also observe that the experimental VANs reveal highly tortu-
ous (curved) segments, whereas the iCNS algorithm generates only 
straight segments (no tortuosity). Thus, we opted to add tortuos-
ity to existing vessels in the network as previously described11 until 
the aVANs resembled experimental VANs. This was programmati-
cally accomplished by first calculating the necessary adjustments to 
match the length CDFs between the aVAN and the VAN counter-
part. Then, the tortuosity CDF was matched between the aVAN and 
the VAN. By sorting the length adjustments, the tortuosity can be 
applied to the appropriate segments with the smallest tortuosity ap-
plied to segments that are already the correct length and the highest 
tortuosity is added to vessels having the largest length disparity.

APPENDIX E

IMPLEMENTATION ICNS FOR SYNTHE SIS OF THE 
CEREBR AL CIRCUL ATION
In this section, we will describe implementation details for the syn-
thesis of the entire cerebral circulation. The iCNS algorithm can 
either grow two simultaneous trees (arteries and veins) into each 
other or it can grow all trees independently and only join the arter-
ies with the veins prior to the closure stage. We will describe the 
synthesis for the hemisphere, as the cortical subsections (aVANs) are 
merely simplified cases of the hemisphere.

The synthesis of the murine hemisphere involves independently 
synthesizing three arterial trees and one venous tree prior to the 
closure stage. Each tree is synthesized as follows:

(i)	 	 Load the circle of Willis
(ii)	 	 Create/load a backbone of main blood vessels
(iii)		 Set the depth of cortex
(iv)		 Calculate the surface area and volume of the territory
(v)	 	 Calculate the number of segments to grow at each stage
(vi)		 Synthesize pial segments
(vii)		 Synthesize long penetrators
(viii)	 �Synthesize pre-capillary arterioles (or post-capillary venules 

when growing veins)

Figure D1 Illustration of unsupervised spectrum matching method for CDFs of two data sets. The original synthetic length spectra (black solid 
line) shows a known degree of mismatch when compared to the target (dotted black line). When the length is matched at points designated 
by the black circles (N = 101 points), the adjusted aVAN (gray solid line) has a much closer match to the experimental VAN CDF. The 
magnified first few matching points have been visualized for the example used below
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(ix)		 Synthesize a portion of the capillary bed
(x)	 	 Synthesize short penetrators
(xi)		 Synthesize the remaining capillaries

After steps (i)–(xi) have been completed for all trees, step (xii) 
commences that synthesizes the closure while adhering to the con-
dition that arterial terminals can only attach to venous segments 
(and likewise venous terminals can only attach to arterial segments).
Each synthesis stage is controlled by choosing proper constraints, 

sample generators, and the number of vessels. In Table E1, we show 
how the same procedure (growNSegments) can be called to synthe-
size the vessels in each stage. Each stage is defined by a sample gen-
erator, constraints, and the number of segments to grow, and the 
backbone for the tree can be grown using the list of point coordi-
nates (ptCoordMx) and the connectivity, which can be defined from 
a reconstruction or a simple hard-coded segment. With this design, 
the same procedure can be called with different inputs at each stage 
during growth. The choice of sample generators dictates where the 
new terminal points will be generated, thus controlling the new seg-
ments in the domain. We note that the prismSampleGenerator may be 
replaced with analytic samplers such as a hexahedronSampleGenera-
tor or a sphericalSampleGenerator when appropriate.
The synthesis of pial vessels was covered extensively in part I of this 

series, but in short, it uses classic CCO principles and a planarTriangle-
SampleGenerator to generate samples adhering to the STL mesh of the 
cortical surface. This can be replaced with the analytic hexahedralSam-
pleGenerator with a very shallow depth when growing in a hexahedral 

domain (such as replicating a cortical VANs). We enforce the desired 
number of penetrating vessels by expanding the pial network until the 
number of terminals matches the specified number of penetrators (long 
+short penetrators). We calculated a density of 6.7 ± 1.6 nsgm/mm2 long 
and 9.4 ± 5.3 nsgm/mm2 short arterial penetrators from the Kleinfeld 
data sets (see Section 3.1 for more information on this choice).

After the pial vessel density is reached, the perpendicularPrism-
SampleGenerator is set and the penetrating vessels are formed by 
connecting a perpendicular sample point directly to a pial terminal. 
The capillaries are then formed using a volumeSampleGenerator, 
which samples evenly throughout the space. Once the trees are 
completed, the closure stage creates two instances of a sampleGen-
eratorFromPointCoordinateList that are populated from the open 
terminals of the arterial and venous networks. Typical constraints 
used in each stage of synthesis to recreate Kleinfeld-like networks 
are listed in Table E2.
During capillary synthesis, the most restrictive constraints are set 

while growing the first capillaries. In the capillary growth stage, it 
is possible to relax the volume optimization principle to place the 
optimal bifurcation point without the need for rigorous optimization 
which can become time-consuming. On the other hand, we believe 
that the requirement to balance the tree to maintain equal blood 
flow in terminals is important to achieve realistic perfusion patterns. 
Accordingly, we employ CCO logic in the capillary growth stage, but 
optionally relax the volume optimization objective by placing the 
bifurcation point at preset coordinates using heuristic rules (eg, at 

TABLE E1 Code progression of the iCNS algorithm during staged growth
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the midpoint of the shortest segment). The diameter computation 
for the entire tree is still calculated recursively with Murray's law 
(or if desired by constant shear stress assumptions) as described in 
Appendix C.
As the trees expand, the constraints are relaxed because the 

space becomes more densely populated with vessels and appropriate 

connections become harder to find. We also note that the closure 
stage must be allowed to relax the constraints. This is because the 
sampleGeneratorFromPointCoordinateList must use all the predefined 
points and cannot disregard any sample due to constraints. The work-
flow diagram for simultaneous and independent tree growth is given 
in Figure E2. The inventory of synthetic structures is listed in Table A1.

Figure E2 Workflow diagram of staged 
growth. Left) The growth algorithm 
reflects two stages for penetrator 
growth to ensure a structural match 
to the empirical networks. Right) The 
simultaneous growth (arteries and 
veins simultaneously) can be used to 
enforce a non-intersection constraint if 
desired

Growth Workflow Simultaneous Growth (if desired)

Stage
maxL 
(μm)

minL 
(μm)

minAngle 
(°)

maxAngle 
(°)

minNSL 
(μm)

maxNSL 
(μm)

Backbone NA NA NA NA NA NA

Pials NA 10 NA 90 30 NA

Long penetrators NA NA 80 100 0.45 · CD 0.9 · CD

Capillaries 100–200 50–100 NA NA 245–520 NA

Short penetrators NA NA 85 95 0.1 · CD 0.35 · CD

Capillaries 7–100 5–50 NA NA 123–245 NA

Closure 80 5 15 180 5 NA

Abbreviations: CD, cortical depth; L, length (new segment or existing segment); NA, not used; NSL, 
new segment length.

TABLE E2 Typical constraints used 
in synthesizing cortical microvascular 
structures
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APPENDIX F

CHAR AC TERIZ ATION OF THE C APILL ARY BED

Figure F1 Preliminary investigation of vertical aligment bias in empirical and synthetic networks. The empirical network E1.1 shows a 
significant peak around 33°, while EB1.1 shows a valley (no occurrence) at <5°. The current space-filling algorithm for assigning the capillaries 
follows a slight tendancy toward horizontal with very little bias toward vertical connectivity. This is a point to investigate in depth in future 
work

APPENDIX G

SYNTHE TIC NE T WORK HEMODYNAMIC 
PERFORMANCE
We conducted hemodynamic simulations to assess the total blood 
flow resistance in the empirical and synthetic data sets. For this 
purpose, the pressure drop between pial arterial input and pial ve-
nous outflow was varied over a wide range from 55 to 155 mmHg. 
The total flow was computed using techniques discussed else-
where.18 The resulting perfusion was plotted as a function of 

pressure drop across the network. Figure G1 shows that the flow-
pressure relationship is almost linear despite the complex cortical 
network configuration in the empirical networks. The slope in the 
flow/pressure trends is indicative of the total resistance of the en-
tire VAN. It can be seen that the total resistances in the three VANs 
reported are similar. The fourth empirical sample also reflects this 
similarity but was not reported here, because it exhibited a 30% 
lower resistance than the other samples of its cohort, with several 
other properties lying outside the rest of the cohort as reported 
previously.13

Figure G1 Perfusion flow rates of synthetic networks and their empirical counterparts across parametrically varied perfusion pressures. 
(Left) By varying the pressure, we are able to see similar performance between the empirical and synthetic VANs, where the synthetic 
networks receive reasonable flows when compared to their empirical counterparts. (Right) The normalized perfusion flow reflects excellent 
similarity between the VAN performance during pressure variability. (Normalized flow is computed as the total predicted perfusion divided 
by the hypothetical perfusion at 155 mmHg pressure drop as reference)
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Moreover, the variability between the synthetic and its empirical 
twin, with an average of 9.93% deviation at 0.5 frequency of the 
CDF (as described in Section 3.2) is less than the variance between 
the empirical data sets to the same cohort, with an average of 19.9% 
deviation.
Finally, the plots that normalize flow-pressure relationships dem-

onstrate that the flow and pressure relationship between different 
sets, empirical and synthetic, is in excellent agreement. These pre-
liminary simulations confirm the hemodynamic equivalence of the 
empirical data sets and their synthetic clones.

APPENDIX H

IMPLEMENTATION OF DOUBLE BIFURC ATION 
CLOSURE
The steps of the double bifurcation closure include the following: (I) 
selecting an open terminal, (II) identifying a list of near-neighborhood 
segments from the opposing tree, (III) choosing the two (2) closest 
segments from the list that fit all constraints (minimum length, maxi-
mum length, bifurcation angle, etc.), (IV) adding a segment between 
the terminal and the first of the two chosen segments on the other 
tree, (V) calculating the new bifurcation position using optimization 

or a geometric heuristic as described in Section 2.2, and finally (VI) 
repeating steps (IV) and (V) to attach the terminal to the second of 
the two chosen segments on the opposing tree. Steps (I)–(VI) are 
executed for each terminal on both trees (arteries and veins).

A pseudocode for these steps is given in Table 1. Specifically, in line 
2, we use the sample generator described in part I of this manu-
script that generates a sample point from the list of terminals from 
the opposing tree. In line 3, the two segments of the opposing tree 
are chosen as described in steps (II)–(III). Then, in lines 4 and 5, 
each of these two segments is attached using the add_fork routine, 
which executes steps (IV)–(V). This routine entails adding a new 
segment between the current segment and a point (in this case 
the terminal point of the arterial tree). This process can attach to 
the segment either with or without optimization but must always 
adhere to the list of constraints. Once the terminal has been at-
tached to both close segments of the opposing tree, the terminal is 
removed from the sample generator list and the vessel calipers are 
recalculated. This process is repeated for all terminals in both trees. 
After all terminals of both trees are closed, the resulting vascular 
network reflects a fully connected aVAN complete with arteries, 
veins, and a physiologically consistent capillary bed.

TABLE H1 Pseudocode for microvascular closure algorithm

1. FOR i = 1 TO nTerminals DO

2. terminal aT = venTerminalSampleGeneratorList.getSample //arterial terminal

3. segments vS = choose closest two ∈ close_segment_list(venous_tree, constraintList)

4. add_fork (venous_tree, aT, vS[0]) // with or without optimizing

5. add_fork (venous_tree, aT, vS[1]) // with or without optimizing

6. remove(venTerminalSampleGeneratorList, aT)

7. balanceTree(venous_tree, d0) // update venous_tree diameter ratios

8. terminal vT = artTerminalSampleGeneratorList.getSample //venous terminal

9. segment aS = choose closest two ∈ close_segment_list(arterial_tree, constraintList)

10. add_fork (arterial_tree, vT, aS[0]) // with or without optimizing

11. add_fork (arterial_tree, vT, aS[1]) // with or without optimizing

12. remove(artTerminalSampleGeneratorList, vT)

13. balanceTree(artery_tree, d0) // update arterial_tree diameter ratios

14. ENDFOR


