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Computational microscopy in embryo imaging
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The growth of computing power has greatly improved our ability to extract quantitative information about
complicated three-dimensional structures from microscope images. New hardware techniques are also being
developed to provide suitable images for these tasks. However, a need exists for synthetic data to test these
new developments. The work reported here was motivated by studies of embryo health, but similar needs
exist across the field of microscopy. We report a rigorous computer model, based on Maxwell’s equations,
that can produce the required synthetic images for bright-field, differential interference contrast, interferomet-
ric imaging, and polarimetric imaging. After a description of the algorithm, sample results are presented,
followed by a discussion of future plans and applications. © 2004 Optical Society of America

OCIS codes: 180.0180, 180.3170, 180.6900.
A new computational model for microscopy is reported.
The motivation for this work arose during the develop-
ment of a new interferometric microscope for imaging
embryos to determine their viability. We have devel-
oped a new instrument, the quadrature tomographic
microscope,1 that is similar to the Jamin–Lebedeff
interferometric microscope,2 except that it uses a
polarization technique for detecting both phases of
an optical field.3 It provides an alternative to other
means of determining the phase of an optical field,
such as the use of multiple intensity measurements.4

These two-dimensional images are not simple slices
of a three-dimensional image. To a first approxima-
tion, they are integrals of the index of refraction along
a ray propagating from source to receiver, suggest-
ing reconstruction methods inspired by x-ray computed
tomography scans. The next level of complexity ac-
counts for diffraction and suggests reconstruction with
diffraction tomography.5 This is still a simplif ication
resting on the assumptions of the first Born approxi-
mation, and the structure of the embryo violates these
assumptions.

These reconstruction processes both involve pre-
cise rotation of the specimen on the microscope stage,
which is a difficult task. A simpler approach to three-
dimensional imaging is Z stacking: focusing the mi-
croscope in small increments to different depths
through the object. As every microscopist is aware, it
is possible to discern some three-dimensional structure
by moving the focus knob on the microscope. Never-
theless, we know that the optical transfer function in
three dimensions is a toroid with a null at the origin,
and this limits our ability to recover three-dimensional
information. Techniques using structured lighting
can avoid this null but still offer limited resolution in
the axial direction.6 With noise present, full three-
dimensional reconstruction will never be perfectly
accurate, but, because we are asking for a relatively
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small amount of information, statistical aggregation
characteristics of mitochondria and a simple count of
the number of cells, these simpler measurements may
well suffice. To determine whether this is true, we
need to examine Z stacks of known objects, and the
best way to do this with certainty is to use synthetic
data. Because of the high density of mitochondria
and the relatively large size of cells compared with the
wavelength, we cannot rely with certainty on the f irst
Born or Rytov approximation to provide a suitable
forward model for generating these data.

This Letter reports on the generation of synthetic Z
stacks by using an existing f inite-difference time-do-
main (FDTD) computer model to compute the f ield in
the pupil and a Fresnel–Kirchhoff integral to compute
the f ield in each image plane.

Figure 1 illustrates the method. In the FDTD
model a plane wave is propagated through a com-
putational space that contains our object of interest,
as shown in the upper left panel of the f igure. The
resulting field at the boundaries is propagated to

Fig. 1. (a) Method of computation begins with the FDTD
computation to obtain the f ield throughout the volume.
(b) Next the complex field is computed in the pupil plane
and (c) propagated to the image plane. (d) The latter two
steps are repeated for each image plane.
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the far f ield where we place the pupil of the lens of
the microscope (upper right). This is accomplished by
weighting the FDTD results with a three-dimensional
Green’s function and integrating over the volume.7

We can employ the Fresnel–Kirchhoff integral to
propagate the field to the imaged plane (lower left
panel in the figure):
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Here the desired f ield as a function of x and y in an
image plane at depth z is U �x, y, z�. The f ield in the
pupil is UA�x1, y1, z1�, k is the scalar wave number, and
the integral is over the aperture at the pupil. Quite
simply, the formula adds a slight curvature to the field,
uses the two-dimensional Fourier transform to propa-
gate the field through space, and then f lattens it out
again.

This allows us to simulate focusing the microscope to
different depths (lower right panel in f igure) above and
below the object center. It is important to note that
finding the refocused field is not the same as f inding
the original f ield at that depth plane.

We developed a series of tests to validate the
three-dimensional FDTD program and generate pro-
gressively more complicated simulated images. Our
first test simulated a field propagating through a
transparent glass bead with a diameter of 20 mm and
an index of ref lection of 1.5 in water with an index of
ref lection of 1.33. By propagating the f ield back to
image plane z � 0, we see in Fig. 2 that the simulated
results are consistent with measurements. The left
panel of the f igure shows the simulation, and the right
panel shows real data with a somewhat larger bead.
The simulation is currently limited, on our computers,
to a volume with dimensions of a cube slightly larger
than 20 mm, whereas available beads are somewhat
larger. In both cases the phase was unwrapped with
a two-dimensional phase-unwrapping routine.8

After refocusing the field in small increments to po-
sitions along its depth axis, we generated a plot in the
x z plane, with the amplitude shown in Fig. 3. As
expected, the bead focused its transmitted f ield into a
severe bright spot in the forward direction, as is ob-
served in experimental images.

With this result for a simple geometry as a test case,
we moved on to a more complicated geometry. Our
next test simulated a large sphere in water with an
index of 1.33 encapsulating three smaller, equisized
spheres, as shown in the line drawing in Fig. 4. The
three small spheres had an index of refraction of 1.37,
whereas the larger sphere had an index of refraction
of 1.35. The result of focusing the f ield to the z � 0
plane at the center of the larger sphere yields little
information alone. By focusing the field to the centers
of each of the smaller beads, we are able to ascertain
their presence as shown in the images in Fig. 4. The
overall pattern is much more complicated than that of
the single sphere, but the individual components of the
object are each visible at appropriate image planes. In
the future we wish to test our ability to decode the
geometry and optical properties of the object through
analysis of the three-dimensional images.

The next test case uses a cell with a few mitochon-
dria carefully positioned to determine our ability to
locate and resolve them in three dimensions. One mi-
tochondrion is located at the center of the cell at the

Fig. 2. Images of the phase of an image of the simulation
and experimental data for a glass sphere in water.

Fig. 3. Same image as shown in Fig. 2, as a function of x
and z, for y � 0. Note the focusing effect.

Fig. 4. Three spheres inside a larger sphere. Indices of
refraction for the background, large sphere, and all three
smaller spheres are 1.33, 1.35, and 1.37, respectively.
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Fig. 5. Arrangement of mitochondria for a test case. The
mitochondria are ellipsoids distributed in three planes to
test our ability to locate and resolve their locations.

Fig. 6. Images of a sphere with objects inside it as shown
in Fig. 5. The upper left panel shows the amplitude as a
function of x and y for z at 1 mm below focus. The lower
left panel shows an x, z plot for y � 23 mm. The upper
right panel shows a y, z plot for x �23 mm. The lower
right panel shows some slices in a three-dimensional view.

origin of the x, y, z coordinate system. Four more are
located in the z � 0 plane, and two each are located
in the z �22 and z � 2 planes, as shown in Fig. 5.
The mitochondria are modeled as ellipsoids with di-
ameters of 0.5 mm in two of the principal directions
and 1.5 mm in the third. Sample images are shown in
Fig. 6. Only a small central volume, 5 mm2 in x and
y and 10 mm deep in z, is reconstructed, so the outer
boundary of the sphere is not visible in these pictures.
Each of the mitochondria is observed, located, and re-
solved. Because of diffraction effects, some artifacts
begin to appear, which will complicate the picture as
more mitochondria are introduced.

This Letter has illustrated the ability of our model
to generate realistic synthetic quantitative Z stack
data, allowing us to evaluate a microscope’s ability
to locate and resolve features in a three-dimensional
object. For sufficiently simple objects with sufficient
contrast and high spatial frequencies, such as a few
mitochondria, the model confirms the well-known
fact that the objects can be located directly from the
Z stacks. For large objects, such as the cells
themselves, some type of reconstruction algorithm
will be required. The synthetic data provide a
method for validating such algorithms. Likewise,
for a cell with more than 100,000 mitochondria,
the complicated interactions of all the scattered
fields will require at least some image processing
to determine useful properties of their distribu-
tion, and the synthetic data will be critical to
understanding the requirements and evaluating the
resulting algorithm.

The present model runs on a cluster of four Pen-
tium 3 machines at 1 GHz and requires 6–12 h, with
a total memory requirement of 2–4 Gbytes. With the
help of advances in parallel computing we need to in-
crease the size of the model to approximately 100 mm3.
We may also need to compute the pupil field on a more
dense grid to allow for higher numerical apertures and
fields of view.

Additional applications include variations in the
input f ield, for structured-lighting or confocal mi-
croscopy. Different states of polarization are handled
correctly on both input and output. In conclusion,
this model provides a rigorous method for generating
synthetic data for a variety of microscopic imaging
techniques.
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