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Abstract

Recent advances in two-photon fluorescence microscopy (2PM) have allowed large scale

imaging and analysis of blood vessel networks in living mice. However, extracting network

graphs and vector representations for the dense capillary bed remains a bottleneck in many

applications. Vascular vectorization is algorithmically difficult because blood vessels have

many shapes and sizes, the samples are often unevenly illuminated, and large image vol-

umes are required to achieve good statistical power. State-of-the-art, three-dimensional,

vascular vectorization approaches often require a segmented (binary) image, relying on

manual or supervised-machine annotation. Therefore, voxel-by-voxel image segmentation

is biased by the human annotator or trainer. Furthermore, segmented images oftentimes

require remedial morphological filtering before skeletonization or vectorization. To address

these limitations, we present a vectorization method to extract vascular objects directly from

unsegmented images without the need for machine learning or training. The Segmentation-

Less, Automated, Vascular Vectorization (SLAVV) source code in MATLAB is openly avail-

able on GitHub. This novel method uses simple models of vascular anatomy, efficient linear

filtering, and vector extraction algorithms to remove the image segmentation requirement,

replacing it with manual or automated vector classification. Semi-automated SLAVV is dem-

onstrated on three in vivo 2PM image volumes of microvascular networks (capillaries, arteri-

oles and venules) in the mouse cortex. Vectorization performance is proven robust to the

choice of plasma- or endothelial-labeled contrast, and processing costs are shown to scale

with input image volume. Fully-automated SLAVV performance is evaluated on simulated

2PM images of varying quality all based on the large (1.4×0.9×0.6 mm3 and 1.6×108 voxel)

input image. Vascular statistics of interest (e.g. volume fraction, surface area density) calcu-

lated from automatically vectorized images show greater robustness to image quality than

those calculated from intensity-thresholded images.

Author summary

Remarkably little is known about the plasticity (i.e. adaptability) of microvasculature (i.e.

capillary networks) in the adult brain because of the barriers to acquisition and processing
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of in vivo images. However, this basic concept is central to the field of neuroscience, and

its investigation would provide insights to neurovascular conditions such as Alzheimer’s,

diabetes, and stroke. Our team of (biomedical, optical, and software) engineers is develop-

ing the pipeline to image, map out, and monitor the capillary blood vessels over several

weeks to months in a healthy mouse brain. One of the major challenges in this workflow

is the process of extracting the capillary network roadmap from the raw volumetric micro-

scope image. This challenge is exacerbated by in vivo imaging constraints (e.g. low/aniso-

tropic resolution, low image quality (noise/artifacts), non-standard (tube-shaped)

contrast agent). To confront these issues, we developed a general-purpose software

method to extract vascular network maps from low quality images of all sorts, enabling

researchers to better quantify the vascular anatomy portrayed in their images. The benefit

will be a better understanding of the neurovasculature on the spatial and temporal scales

relevant to fundamental cellular processes of the brain.

This is a PLOS Computational Biology Software paper.

Introduction

The neurovascular system provides oxygen and nutrients in response to local metabolic

demands through the process of neurovascular coupling [1]. This process is dysregulated in

pathological conditions such as hypertension and Alzheimer’s disease [2, 3]. Individual capil-

lary tracking over multiple imaging sessions would provide a useful experimental tool for mea-

suring neurovascular plasticity in preclinical disease models. Such experiments could screen

new stroke therapeutics and provide much needed relief to clinical studies [4–7]. However

these measurements remain intractable for large image volumes, due to difficulties in vectori-

zation. Researchers demonstrated individual capillary tracking in living mouse cortex over sev-

eral weeks [8], but the statistical significance of vascular plasticity estimates could have been

improved with larger images and more automated processing.

A vectorized network consists of a graph that summarizes the connectivity and a collection

of simple objects that represent individual vessel segments. High-fidelity vectorization is diffi-

cult to attain in general, but greatly facilitates and simplifies the vascular network for statistical

analysis, for example for finding patterns between species [9]. State-of-the art approaches to

vascular vectorization [10–12] require image segmentation of the vascular network. From a

computer vision perspective, the segmentation of blood vessels from in vivo optical micros-

copy images presents major challenges:

• Blood vessels have many sizes and bifurcations causing a variety of shapes.

• Objects are unevenly illuminated (especially larger vessels), and image quality decreases with

depth.

• Large, information-rich images are required to achieve both statistical power and spatial

resolution

Although ex vivo imaging techniques have yielded whole mouse brain vascular vectoriza-

tion at one-micron voxel resolution [12], in vivo imaging suffers from much lower signal
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quality due to deeper tissue penetration. It is this image segmentation requirement, which is

difficult to meet in vivo, that motivates us to revisit the vascular vectorization workflow.

For the purposes of quantifying vascular anatomy, skeletonization techniques are used to

vectorize and extract the centerlines of blood vessels [10, 11, 13–15]. Skeletonization tech-

niques perform iterative morphological filtering on binarized images, and therefore require

segmented images generated from vessel enhancement filtering, thresholding, or manual or

machine-learned annotation. Manual, voxel-by-voxel, image segmentation ensures a high-

quality binary input image to skeletonize, but is a tedious and often heuristic task. Alterna-

tively, convolutional neural networks allow computers to learn this manual task from example

[11, 16]. However, deep learners that are trained by humans in voxel-by-voxel classification

have human biases and are not intrinsically robust to input image properties such as resolution

and noise level.

Many filters using local curvature information show improved robustness to image quality

[17–19]. These filters require eigenvalue decomposition of the Hessian at many voxels, and are

thus computationally expensive. They rely on local shape information, are difficult to extend

to multiscale, and show attenuated response at vessel bifurcations. These deficiencies were

addressed by Jerman et al. [20] using a unitless ratio of eigenvalues. Lee and coworkers [21]

used a Hessian-based filter to segment images using an exploratory vectorization algorithm

that automatically traces vessels and terminates each trace when the filtered image drops

below a predefined threshold. However, the termination criteria was arbitrary and did not pro-

duce a connected network.

Manual or machine-learning approaches to voxel-by-voxel, image segmentation [22] do

not guarantee any topological structure without remedial morphological filtering. Further-

more, traditional performance metrics of image segmentation (e.g. Dice coefficient) do not

measure topological or connectivity accuracy. As an alternative, we propose extracting vascu-

lar vectors directly from 2PM images, thereby enforcing fundamental shape and connectivity

constraints. To demonstrate this workflow, we present the Segmentation-Less, Automated,

Vascular Vectorization (SLAVV) method outlined in Fig 1.

The advantage of the direct vectorization approach is that there is no requirement to seg-

ment, interpolate, or otherwise preprocess the input image. The image processing required to

vectorize is simplified: Vessel segments and bifurcations are both enhanced by a single blob

detector. The extracted vectors have realistic shape and connectivity constraints, so there is no

need for nonlinear morphological filtering. Additionally, there is no need to create training

sets or train the software, because the method does not rely on machine learning. However,

the extracted vectors are probabilistic and need to be classified in some way. A graphical user

interface is used to curate the extracted vectors from in vivo, plasma- and endothelial-labeled

2PM images to create ground-truth vectorizations. Fully-automated vectorization perfor-

mance is then evaluated on realistic, simulated 2PM images of varying quality. Performance is

evaluated as the percent error in several vascular statistics of interest: volume fraction, surface

area density, length density, and bifurcation density.

Results

Demonstration of SLAVV

To demonstrate the SLAVV approach, a diverse set of images (see 2PM imaging) were vector-

ized (see Automated vessel vectorization), manually curated (see Interactive curation soft-

ware), and visualized (see Visualizations). Images 1 and 2 are of the same field of view using

two different sources of contrast (plasma- vs. endothelial-label), while Image 3 is from a differ-

ent mouse and has a much larger field of view, consisting of 6 tiled images. The intermediates

PLOS COMPUTATIONAL BIOLOGY Segmentation-less vectorization of microvasculature from in vivo two-photon images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009451 October 8, 2021 3 / 20

https://doi.org/10.1371/journal.pcbi.1009451


and outputs of SLAVV applied to these example images are also provided for interoperability.

Three more images the size of Image 3 are further demonstrated in a tutorial of the manual

processing steps on the GitHub repository. The runtimes of the automated steps (Design con-

siderations for scalability) are shown in Table 1, and bulk statistics (see Statistical analysis of

vectors) are shown in Table 2. Example inputs (plasma- or endothelial-labeled fluorescent

images) and intermediates (energy, size, vertex, and edge images) are shown for a small vol-

ume of vasculature in Fig 2A. Input images were linearly filtered at many scales (see Energy:

Multi-scale linear filtering) to produce the energy and size images which estimate the center-

line positions and radius of vessels, respectively. Vertices were extracted (see Energy: Multi-

scale linear filtering) as the minima of the energy image, with associated radii looked up from

the size image. Edges were traced (see Edge extraction) from one vertex to another along the

path of minimum energy, and the size of the vessel at each location was again read from the

size image. The connectivity information was then summarized (see Network and strand iden-

tification) as a network connecting bifurcations or endpoints with strands. The strand objects

(collections of non-bifurcating edges) were each labeled with a unique color in the perspective

rendering in Fig 2B. The axial projections in Fig 2C show vector vessel depth or direction

information as a volume filling (at one quarter of the estimated vessel radius) overlaying the

input image. The runtimes of the automated vectorization steps are shown in Table 1 for each

of the three input images. Table 2 shows total network statistics of interest.

Interactive curation software

For the vectorization of raw input images, an interactive vector curation interface (see Interac-

tive curation software) was used to segment the automatically-generated vertex and edge

Fig 1. Overview of the SLAVV approach. The purpose of SLAVV is to vectorize vascular objects from raw three

dimensional images. The first step of the method is to linearly filter the input image to form “energy” and “size”

images, which enhance vessel centerlines and estimate vessel sizes, respectively. Next, vertices along the blood vessels

are extracted as local minima of the three-dimensional energy image. Vertices are then connected by edges, which

follow minimal energy trajectories. Finally, a graph theoretic representation of the vascular network is generated from

the vertices and edges.

https://doi.org/10.1371/journal.pcbi.1009451.g001

Table 1. Runtimes of automated processing steps in seconds. Processing computer specifications: Intel Xeon CPU

E5–2687 v3 @3.10 GHz, 32 GB RAM, 64-bit operating system, and 10 independent cores for parallel processing.

Image 1 Image 2 Image 3

Energy filter runtime [s] 986 1,037 7,853

Vertex extraction runtime [s] 22 35 96

Edge extraction runtime [s] 73 204 141

Network analysis runtime [s] 19 0.5 34

Number of Voxels 1.67×107 1.67×107 1.64×108

https://doi.org/10.1371/journal.pcbi.1009451.t001
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objects into true and false categories and to patch false negatives. Vertex and edge curation

costs for the three curated image volumes are shown in Table 3. Image 3 required the most

time because it was the largest volume. Image 1 required more time than Image 2 although it

was the same field of view, because the endothelial label was not as strong as the plasma label.

The large number of vertex selections for Image 3 were due to the imperfect tiling process (see

Image tiling) causing image discontinuities away from the image boundaries. Many of these

selections were done simultaneously using a click-and-drag box selection. Local thresholds

were placed on the energy feature of the vertices of the max energy feature of the edges in

order to coarsely classify vectors over large regions of the image at once. The Final Total rows

refer to the number of vector objects (vertices or edges) remaining in the final curated

datasets.

Example anatomical statistics

To demonstrate its statistical power, the SLAVV software was used to automatically vectorize

and manually classify a large volume of capillaries, venules, and arterioles. Fig 3A shows a

three-dimensional rendering of the vectorized vessels (color-coded by strand) beneath a maxi-

mum intensity projection of the superficial layers of the tiled (see Image tiling) Image 3. The

vectorized vessels were idealized as collections of cylinders attached at the centers of their

faces, and connected face to face (Fig 3B). Fig 3C shows lateral-area weighted histograms of

vessel statistics (see Statistical analysis of vectors): depth, radius, and inclination (i.e. angle

from xy plane). Fig 3D shows bulk statistics (length, area, volume, radius, and inclination)

binned by depth (z coordinate). The total summary statistics (see Statistical analysis of vectors)

and a binary mask (see Visualizations: Three-dimensional scalar fields) derived from this vec-

tor set serve as ground truth statistics and image segmentation for the automated SLAVV per-

formance evaluation.

Objective performance evaluation of fully-automated SLAVV

To remove the dependence on (subjective) manual annotation in determining ground truth

images, two-photon images were simulated (see Simulating 2PM images) from an assumed

ground truth anatomy with various levels of contrast and noise. To enable the tracking of bulk

network statistic accuracy in addition to image segmentation accuracy, a ground truth vector

set (with known network statistics) was used to generate the ground truth segmented image.

Image segmentation performance was evaluated using ROC curves to show the voxel-by-voxel

segmentation strength of the energy feature of vectors. Errors in bulk statistics were used as

performance metrics because they additionally capture topographical and connectivity accu-

racy. Seven simulated images of varying quality were generated from the vector set from

Image 3 (Table 4). The noise and contrast settings for the simulated images are shown in Fig

4A, and maximum intensity projections are shown in the top row of Fig 4B.

Table 2. Bulk network statistics of interest.

Image 1 Image 2 Image 3

Num. bifurcations 130 194 3,383

Length [mm] 16.2 17.0 443

Area [mm2] 0.495 0.534 13.0

Volume [mm3] 2.17×10−3 2.46×10−3 4.40×10−2

Image Volume [mm3] 2.75×10−2 2.75×10−2 0.761

https://doi.org/10.1371/journal.pcbi.1009451.t002
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Fig 2. Example projections of original two-photon images, intermediate outputs, and vector renderings of manually assisted SLAVV applied to Image 2.

The green chevron is directly underneath a medium sized vessel which bleeds into the original projection volume for the plasma-labeled Image 2 but not the

endothelial-labeled Image 1. A. Either Image 1 or 2 could be the input (Image 2 outputs shown here, Image 1 outputs are similar (S1 Fig). The original image is

subject to multiscale, LoG, matched filtering to obtain three-dimensional energy and size images. The energy image is used to estimate vertex centers and the

size image to estimate their radii. Vertices are used as genesis and terminus points for energy image exploration in the centerline extraction algorithm. Finally,

estimated vessel radii are recalled from the size image to form the volume-filled vector rendering. Gray-scale coloring in the vector renderings corresponds to

the energy values and thus vector probabilities. B. Three-dimensional visual output of SLAVV. Colors represent strands, which are defined as non-bifurcating

vessel segments. Each strand is assigned a random color. The image is 125 μm in z and 460 in x and y. The projection volume used in the other panels is shown

as a gray box in the center of the larger volume. The blue chevron marks the vessel that bleeds into Image 2 at the green chevron. C. Depth and direction

outputs from SLAVV. Vector volumes are rendered over the original projection at a quarter of their original radius to facilitate the visualization of the
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The simulated images were vectorized to characterize the performance of the fully-auto-

mated (see Automated energy thresholding) SLAVV software. Three values (60, 80, and 100%)

were used for the fG processing parameter in the energy calculation step. Vertices were

extracted for each energy image and classified using global thresholding with a dense sweep of

thresholds. The curated vertex sets were rendered at the resolution of the input image and

compared to the ground truth image voxel-by-voxel to calculate the confusion table enumerat-

ing the false positives FP, true positives TP, false negatives FN, and true negatives TN. To

approximate an expert user selecting the most accurate image segmentation using a single

global threshold selection, the vertex set yielding the highest classification accuracy (TP + TN)/

(TP + TN + FP + FN) was passed to the edge extraction step.

Edges were extracted for each vertex set and similarly classified using many global thresh-

olds. Edge sets were rendered and voxel-by-voxel compared to the ground truth to find the

sensitivity and specificity for each threshold. An ROC curve was made to observe the voxel-by-

voxel classification strength of global thresholding on the edge objects (bottom row of Fig 4B).

The edge set from each threshold sweep with maximal voxel-by-voxel classification accuracy

was passed on to the network calculation step to compute statistics and compare to those of

the ground truth.

The simulated image quality was benchmarked using a commonly-used, voxel-by-voxel,

intensity thresholding classifier (Fig 4, black series) that has perfect accuracy in the limit of

perfect image quality (CNR!1). To demonstrate the sensitivity of the intensity thresholding

classifier to image quality, the volume was computed from the intensity thresholded image

with the best voxel-by-voxel classification accuracy. For the higher quality images, the volume

accuracy was comparable to that of the vectorized approaches, however, the topology was

unconstrained, leading to salt and pepper segmentation errors. These topological errors made

surface area calculation highly sensitive to noise for the intensity classifier approach (result not

shown). For the lowest quality image, the intensity classifier yielded a maximal segmentation

accuracy of around 95%, corresponding to the operating point that assigns all voxels to back-

ground (0% volume accuracy).

As a vessel segmentation tool on input images of poor quality (1� CNR� 4), three fully-

automated implementations of SLAVV outperformed the intensity classifier (Fig 4C and 4D.

underlying vessels. Direction is calculated by spatial difference quotient with respect to edge trajectory. The centerline for the vessel above the green chevron

lies above the projection volume.

https://doi.org/10.1371/journal.pcbi.1009451.g002

Table 3. Summary of human effort toward manual vector classification on the graphical curator interface in the demonstration of SLAVV. Selections were point-

and-click classifications of objects either individually or over a rectangular volume.

Image 1 Image 2 Image 3

Vertices Duration [min] 101 24 206

Local Thresholds 2 5 110

Selections 4724 230 19,845

Additions 62 18 28

Final Total 1,380 1,397 30,586

Edges Duration [min] 207 140 410

Local Thresholds 9 0 1

Selections 145 66 96

Additions 152 63 557

Final Total 1,193 1,323 31,523

https://doi.org/10.1371/journal.pcbi.1009451.t003
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Fig 3. Example statistics of the microvasculature calculated from manually assisted SLAVV applied to Image 3. A. Three-dimensional rendering of strand

objects similar to Fig 2B. Size of the image is 600 μm in z, 1350 in x, and 940 y. Projection of the first 70 μm of the original image is shown with the same

perspective. B. Cartoon depiction of consecutive cylinder representation of a vessel segment used in calculations. C. Histograms of depth, radius, and

inclination (angle from the xy plane). The large peak in the inclination histogram at horizontal alignment is due to low axial resolution (5 μm). Contributions

of cylinders to the bins are weighted by their lateral areas. D. Depth-resolved anatomical statistics output from SLAVV. Cylinders are binned by depth. Their

heights, lateral areas, and volumes are summed and divided by the image volume apportioned to each bin to yield length, area, and volume densities of

vasculature. Average radius and inclination in each depth bin are lateral area-weighted averages.

https://doi.org/10.1371/journal.pcbi.1009451.g003
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Table 4. Descriptions of 2PM input images used in SLAVV demonstration. Note that the endothelium (vessel wall) was labeled in Image 1.

Image 1 2 3

Mouse 1 1 2

Contrast localization Endothelium Plasma Plasma

Transverse dimensions [μm] 469×469 469×469 1350×940

Axial (depth) dimension [μm] 125 125 600

Transverse voxel length [μm] 0.92 0.92 1.07

Axial voxel length [μm] 2 2 5

Bit depth 16 16 8

Numerical aperture 1.0 1.0 0.95

Preprocessing None None Tiling, median filter

https://doi.org/10.1371/journal.pcbi.1009451.t004

Fig 4. Objective performance of fully-automated SLAVV software. A. Simulated images of varying quality are generated from the vector set from Image 3

shown in Fig 3. Image quality is swept along contrast and noise axes, independently. Example maximum intensity projections are shown for three extremes of

image quality (triangle: best quality, 4-point star: high noise, 5-point star: lowest contrast). The legend shows the labels for the four segmentation methods used

in B-D. Images are vectorized using SLAVV with different amounts of Gaussian filter, fG (60, 80, or 100% of matched filter length). B. Vasculature is segmented

from three simulated images using four automated approaches: thresholding either voxel intensity or maximum energy feature on edge objects produced by

three automated vectorizations. Voxel-by-voxel classification strengths of thresholded vectorized objects or voxel intensities are shown as ROC curves for three

of the seven input images. Note that the ROC curves for the energy feature of vectors do not have support for every voxel, because not every voxel is contained

in an extracted vector volume. Operating points with maximal classification accuracy are indicated by circles in the bottom row of B and plotted in the top row

of C&D across all input images. C&D. Bulk network statistics (length, area, volume, and number of bifurcations) were extracted from vectors or binary images

resulting from maximal accuracy operating points. Performance metrics were plotted against CNR (image quality) for a (C) contrast or (D) noise sweep.

Thresholding vectorized objects to segment vasculature demonstrated a greater robustness to image quality than thresholding voxel intensities. Surface area,

length, and number of bifurcations were not extracted from binary images, because these images were topologically very inaccurate.

https://doi.org/10.1371/journal.pcbi.1009451.g004
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The peak, voxel-by-voxel classification accuracy of fully-automated SLAVV was above 97% for

all image qualities tested. However, the number of bifurcations detected was very sensitive to

noise. A larger fraction of Gaussian in the filtering kernel (fG ! 100%) provided greater

robustness to noise for bifurcation detection, but resulted in an underestimate of volume even

for the higher quality input images.

Materials and methods

2PM imaging

Two-photon fluorescence microscopy (2PM), in vivo, three-dimensional images of murine

microvasculature were acquired from two mice at two resolutions with two different sources

of contrast. Animal use was in accordance with IACUC guidelines and approved by the Ani-

mal Care and Use Committee of the University of Texas at Austin. Table 4 summarizes the

images input to the SLAVV software for demonstration.

Dual channel plasma- and endothelial-labeled. Mouse 1 (Young adult Tie2-GFP, FVB

background, JAX stock no. 003658) was implanted with a 4mm cranial window over sensori-

motor cortex [23]. For imaging, the mouse was anesthetized with 1–2% isoflurane in oxygen

and head fixed. A retro-orbital injection of 0.05mL of 1% (w/v) 70 kDa Texas Red-conjugated

dextran was given to label the plasma. GFP fluorescence was localized to the endothelium.

Images 1 and 2 were acquired with a Prairie Ultima two-photon microscope with a Ti:Sapphire

laser (Mai Tai, Spectra-Physics) tuned to 870 nm and a 20× 1.0 NA water immersion objective

(Olympus) using Prairie View software.

Image tiling. Mouse 2 was injected intravenously with Texas Red and imaged through a

cranial window using a two-photon microscope [24]. The laser (1050 nm, 80 MHz repetition

rate, 100 fs pulse duration [25]) was scanned using galvo-galvo mirrors over 550 μm × 550 μm

(512 × 512 pixels) and axially using a motorized stage over 600 μm depth (120 slices). The

images were output as 16 bit signed integers (3×107 voxels). To achieve the tiling in Image 3, a

2×3 grid of plasma-labeled images with 100 μm overlaps were median-filtered (3×3×3 voxel

kernel) and then tiled with translational registration via cross-correlation [26] in Fiji [27].

Automated vessel vectorization

Novel Segmentation-Less Automated Vascular Vectorization (SLAVV) software extracts vec-

tor sets representing vascular networks from raw gray-scale images without the need for pre-

processing or specialized hardware. As described in the documentation on the GitHub reposi-

tory, the SLAVV method has four major steps:

1. Energy: Multi-scale linear filtering

2. Vertex extraction

3. Edge extraction

4. Network and strand identification

Vertices and edges resulting from Steps 2 and 3 are probabilistic vectors that require classi-

fication (see Vector classification).

Energy: Multi-scale linear filtering. The raw (unprocessed/uninterpolated), three-

dimensional input image is matched-filtered for vessels (idealized as spherical objects) within

a user-specified size range to yield a multi-scale, four-dimensional image (Fig 5, conceptual).

The matched filter is the convolution of a Laplacian of Gaussian (LoG) with standard
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deviation, σ, and an Ideal (spherical and/or annular) kernel of radius r. Therefore, the radius,

R, of the matched vessel is given by R2 = σ2 + r2.

To detect a variety of fluorescent signal shapes, the Ideal kernel is a combination of spheri-

cal and annular pulses. The spherical kernel, KS(ρ) = 1ρ<r, and annular kernel, KS(ρ) = δ(ρ − r),
are defined analytically in spherical coordinates with respect to the radial coordinate, ρ, and

the ideal kernel radius, r, using the Dirac delta function, δ, and the indicator function, 1. These

kernels are Fourier transformed analytically before discrete sampling in the three-dimensional

spatial-frequency domain. The weighting parameter fS controls the fraction of spherical versus

Fig 5. One-dimensional simplification of linear filtering step. To form the energy image E at scales 1. . .n. . .N, the original image I(x) is convolved with a

LoG filter and an Ideal kernel. The Ideal kernel is a linear combination of spherical and annular pulses to match the fluorescent signal shape of vessels. σ2 is the

variance of the Gaussian, r is the radius of the Ideal kernel, so R2 = σ2 + r2 is the square “radius” of the LoG, matched filter. The resulting multiscale energy

image is projected along the scale coordinate to form two three-dimensional images that depict energy and size (not shown here, example in Fig 2. In this

example, the kernel weighting factor was chosen so that the sums of all the spherical and annular kernels were all equal, the ratio r/σ was chosen to be 1, and a

vertex was found at location v with radius Rn and energy En(v).

https://doi.org/10.1371/journal.pcbi.1009451.g005

Table 5. Processing parameters used to vectorize the three experimental images and the set of synthetic images

derived from Image 3. The smallest and largest radii delimit the range of the characteristic radii of the convolutional

matching kernels used, and the “scales per octave” parameter determined the sampling density in the scale coordinate.

Image 1 2 3 3-synthetic

fG [%] 50 75 50 60, 80, 100

fS [%] 50 50 85 100

Smallest radius [μm] 1.5 1.5 1.5 1

Largest radius [μm] 60 60 60 45

Scales per octave 6 6 3 3

https://doi.org/10.1371/journal.pcbi.1009451.t005
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annular pulse in the matching kernel, thus weighting the responses from signals in the shape

of the vessel wall vs lumen. Therefore, fS = |KS|/(|KS| + |KA|), where |KS| and |KA| are the total

weights (L1 norms) of the spherical and annular matching kernels.

The Ideal kernel is convolved with a Gaussian to achieve robustness to noise and slight mis-

matches in size and shape. The processing parameter fG controls the relative sizes of the Gauss-

ian and Ideal kernels, thereby trading noise robustness for accuracy of size and position.

Therefore, fG = σ/(σ + r), where σ is the standard deviation of the Gaussian kernel and r is the

radius of the Ideal kernel.

The scale space sampling is exponentially distributed with tunable density. The octave is

defined as doubling of the vessel volume. For example, Image 1 is sampled across 16 doublings

of the matched filter volume at a rate of 6 scales per octave, producing 96 discrete scale sam-

ples. To enforce a minimal amount of blurring and ensure good shape agreement between

objects in the image and matched filters, a three-dimensional (anisotropic) Gaussian model of

the microscope point spread function [28] is also convolved with each matched filter. Table 5

shows the processing parameters used to process the featured images.

The four-dimensional (multi-scale) energy image is projected across the scale coordinate to

yield two three-dimensional images (both the same size as the input) called the energy and size

images. The energy image encodes “energy” which is used to estimate the likelihood of that

voxel containing a vessel centerline. The size image encodes the expected radius of a vessel cen-

tered at each voxel. Because energy is the Laplacian of a real-valued image, negative values cor-

respond to locally bright regions of the original image. Image voxels with positive energies are

therefore ignored based on the assumption that the fluorescent signal is brighter than the back-

ground. To compare Laplacian values across different scales and amounts of blurring, each

second derivative is weighted by the variance of the Gaussian filter at that scale in that dimen-

sion [29] to compensate for decreased derivative values due to blurring.

The projection method across scale-space depends on the signal type, because the annular

signal is more sensitive to size mismatches and cannot be averaged across many sizes reliably.

Thus, for the annular input signal (endothelial label), the estimated scale is simply the scale

that yielded the least energy. For the spherical input signal (plasma label), the estimated scale is

a weighted average across all scales that yielded a negative energy using energy magnitude as

weights. For linear combinations of annular and spherical signals, the weighted average of the

two estimates is taken. The three-dimensional, scale-projected energy image is then defined by

sampling the four-dimensional energy image at the scale nearest the estimated scale at each

voxel.

Vertex extraction. The purpose of the vertex extraction step is to identify centerline

points along the vascular network to serve as seed points for the edge extraction step. The

inputs are the energy and size images, and the output is a set of vertices: non-overlapping

spheres that should be concentric with vessel centerlines, share the same radius as the vessel at

that central location, and densely mark the vasculature with at least one vertex for each strand

in the final output network.

This algorithm is based on the keypoint extraction outlined by Lowe [29]: Vertex center

points are located by searching the energy image for local minima in all three dimensions.

Additionally, the sizes of the vertices are assigned by referencing the size image at their center

points. Vertex volumes are then painted onto a blank canvas from lowest to highest energy to

obtain the most probable non-overlapping subset (Algorithm 1, one-dimensional example).

Edge extraction. The purpose of the edge extraction step is to trace the vessel segments

between pairs of vertices with a simple automated algorithm. The inputs are the set of vertices

and the energy and size images. The output is a set of edges: vessel traces connecting vertex

pairs, summarized by ordered lists of centerpoint three-space coordinates and associated radii.
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Algorithm 2 loops through the list of vertices in parallel, exploring the energy image around

each origin vertex. The neighboring energy values and the pointers leading back to the origin

vertex are stored in sparse maps defined at the explored locations. The exploration follows the

lowest energy neighbor, in a watershed manner, from the origin vertex (A) seed point, until

finding a terminal vertex (B). When found, the connecting edge is traced from the terminal to

the origin vertex following the shortest path with lowest maximum energy using the pointer

map (the numel function returns the number of elements in the list). To guarantee that this

algorithm uses finite time and memory, maxima were placed on the number of edges that each

seed vertex could find (4 edges per vertex) and on the length of trace (20–100 times seed vertex

radius).

Algorithm 1 Extracting vertices from the energy and radius images.

1: Function vertices = find_vertices(energy, radius)

2: Initialize vertices as an empty list

3: Let mask be the vector of ones with length of energy

4: While there is a negative entry in mask�energy

5: Let location = argmin(mask�energy)

6: Let mask(location) = 0

7: If location is a local minimum of energy

8: Initialize vertex with fields:

9: vertex.location = location

10: vertex.radius = radius(location)

11: vertex.energy = energy(location)

12: Append vertex to vertices:

13: Let interval = [-vertex.radius,vertex.radius]

14: Let mask(location+interval) = 0

This algorithm guarantees certain output properties: (1) For each vertex, the edges are

extracted in order of increasing maximum energy. (2) Vertices are not allowed to make multi-

ple edge connections in the same direction, to avoid retracing stretches of vessel segments.

Once a vertex discovers a neighbor vertex by means of an edge, it is not allowed to search far-

ther in the direction of that neighbor. (3) Algorithm 2 extracts non-overlapping centerline

traces forthe edges from each origin vertex. When two edge traces with the same origin vertex

would share a common segment of centerline voxels, the SLAVV software only counts the

redundant trace in the first-extracted, lower-energy (more-probable) edge.

Additional constraints are placed on this algorithm to guarantee other output properties:

(4) In cases where two vertices discover each other, only one of the traces is kept. (5) Small

cycles of three fully-connected vertices are eliminated using graph theoretic methods. Two ver-

tices are adjacent by a small cycle if they can be mutually reached using one and two edges.

The connected components of the adjacency matrix by these small cycles is calculated, and the

least probable edge is removed from each component. The adjacency matrix is then recalcu-

lated and the removal repeated until there are no adjacencies by small cycles.

Network and strand identification. The purpose of the network and strand identification

step is to organize the vectors to facilitate statistical calculations and visualization. The inputs

are the sets of vertex and edge objects, and the outputs are sets of strands, bifurcations and

endpoints. Bifurcations and endpoints are special vertices: bifurcations connect three or more

edges, endpoints connect one. A strand is a set of one or more consecutive edges that connects

exactly two special vertices.

Algorithm 2 Extracting edges associated to a vertex set from an energy image.

1: Function edges = find_edges(vertices, energy, max_number_edges)

2: Initialize edges as an empty list

PLOS COMPUTATIONAL BIOLOGY Segmentation-less vectorization of microvasculature from in vivo two-photon images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009451 October 8, 2021 13 / 20

https://doi.org/10.1371/journal.pcbi.1009451


3: (Parallel) For each vertex_A in vertices

4: Initialize explored_locations and vertices_B as an empty list

5: Initialize number_of_edges_found to 0

6: Initialize energy_map and pointer_map as empty sparse arrays

7: Initialize location as vertex_A.location

8: Let pointer_map(location) = −1
9: While true

10: If some vertex_B in vertices distinct from vertex_A is at location

11: Initialize traced_locations as a list with first entry location

12: While pointer_map(location)� 0

13: Let location = explored_locations(pointer_map(location))

14: Append location to traced_locations

15: Initialize edge with fields:

16: edge.locations = traced_locations

17: edge.vertex_A = vertex_A

18: edge.vertex_B = vertex_B

19: Append edge to edges and vertex_B to vertices_B

20: Increment number_of_edges_found

21: pointer_map(traced_locations) = − number_of_edges_found

22: If number_of_edges_found = max_number_edges, break
23: Append location to explored_locations

24: Let neighbors list the locations in the 3×3×3 cube around location

25: Delete any neighbor in neighbors where pointer_map(neighbor) = 0

26: For vertex_B in vertices_B

27: Let plane be the plane that faces vertex_A at vertex_B

28: Delete any neighbor in neighbors beyond plane from vertex_A

29: Let pointer_map(neighbors) = numel(explored_locations)

30: Let energy_map(neighbors) = energy(neighbors)

31: Let energy_map(location) = 0

32: If min(energy_map)� 0, break
33: Let location = argmin(energy_map)

Bifurcations are found by calculating the adjacency matrix for the graph of the vertices and

edges. Bifurcations are vertices associated with 3 or more edges. These vertices and their asso-

ciated edges are then removed from the graph, leaving only vertices with 1 or 2 edges. The con-

nected components of this graph identify the majority of the strand objects. The remaining

strands and strand fragments are the single edges that connect to bifurcation vertices.

Once all the edges are assigned to strands and a subset of the vertices to bifurcations, a

smoothing operation is applied that keeps the special vertices fixed and smooths the positions

and sizes along the one-dimensional strands. Gaussian smoothing kernels are applied at dis-

crete locations along each strand with standard deviations equal to their radii. Smoothing ker-

nels are further weighted by the energy value at each strand location. Algorithm 2 guarantees

negative energy at every location along an edge, so the weighting is well defined and will favor

the more likely, lower-energy locations. The variable smoothing kernel is then applied to each

strand location to spatially average along the strand trace to increase the statistical significance

of the five local quantities: three-space position, size, and energy.

Design considerations for scalability. To improve computational efficiency, several

design features are built into the energy filtering step. For larger scale objects, the image is

downsampled in each dimension before filtering to have a resolution no greater than 10 voxels

per object radius, and then upsampled afterwards with linear interpolation. The image volume
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is processed in overlapping chunks to respect memory constraints and allow for paralleliza-

tion. The overlapping length is expanded for larger scales to eliminate edge effects within the

image volume. To reduce computational complexity, all blurring, matched filtering, and deriv-

ative approximations are calculated in the Fourier domain with a single, combined filter for

each scale sampled from analytical Fourier representations. The vertex extraction step is simi-

larly parallelized with respect to the input image as is the energy step. Local minima are found

and recorded within small chunks of the image in parallel. The edge extraction step is paralle-

lized with respect to the input vertex list, and the input image is loaded in small chunks around

each vertex. The network identification step has only vector inputs, so its complexity is less of

a concern.

Vector classification

Due to the property of the SLAVV method extracting probabilistic vectors directly from gray-

scale images (without the need for image segmentation), a vector classification step after the

edge extraction step is used to provide a deterministic input to the network statistic calcula-

tions. Vector classification is performed manually (Interactive curation software) or automati-

cally (Automated energy thresholding). For the case of the simulated images with known

ground truth, the vector objects are automatically thresholded by sweeping a probability

threshold and choosing the operating point with the best voxel-voxel image segmentation

accuracy. For the authentic images demonstrated in this manuscript, this threshold selection is

made repeatedly, locally, and with live visual feedback and image volume navigation by an

expert using the graphical curator interface.

Interactive curation software. A built-in, graphical curator interface allows the user to

manually classify probabilistic vertices and edges into true and false categories. The human

effort spent on each manual curation is described here, automatically recorded by the curation

software, and further demonstrated in a tutorial on the GitHub repository.

The automatically generated vectors are rendered transparently over the raw image. The

user sets the intensity limits of the underlying raw image to accommodate variable brightness

and contrast. The user may also view the probabilistic vectors with their brightness dependent

on their energies to assess the accuracy of the automated filtering and vector extraction steps.

The interface enables navigation within the input image volume to view any rectangular sub-

volume as a maximum intensity projection in z. Manual edits to vectors can then be made

within the sub-volume.

Manual edits are either classifications or additions. Two vector classification tools are used:

point-and-click true/false toggling and local energy thresholding (within the navigation vol-

ume). Some vertices are added to a volume in a manual way that is assisted by the energy and

size images. The user specifies the x and y location with a point-and-click and the software

automatically selects the z position that minimizes the energy and the size from the corre-

sponding location in the size image. Additionally, some edges are added by selecting two verti-

ces to connect. The location and size along the added edge are simply linearly interpolated

from the two vertices.

Automated energy thresholding. The vertex and edge objects are both segmented using

global thresholds on the energy feature. Receiver operating characteristic (ROC) curves are

created by sweeping this energy threshold. The most accurate operating points are chosen with

the knowledge of the ground truth image to maximize voxel-by-voxel classification accuracy.

For the vertex objects, global thresholding applies a user-defined upper limit on the acceptable

energy associated with any vertex. Vertices with energies above the threshold are classified as

false and eliminated. Since each vertex serves as a seed point (and possible termination point)
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in the edge extraction algorithm, vertices are segmented prior to edge extraction to improve

performance. For the edge objects, global thresholding applies a user-defined upper limit on

the acceptable maximum energy associated with any edge. Edges with maximum energy above

the threshold are eliminated.

Visualizations

Three-dimensional scalar fields. Outputs of the energy, vertex, edge, and network steps

of the SLAVV software (see Automated vessel vectorization) are automatically output as TIFF

files of three-dimensional scalar fields at the resolution of the input image. These files are

opened in ImageJ [27] for viewing and projection. Vertices and edges are rendered as energy-

weighted, centerline- or volume-filled objects. Centerline filling creates single voxel wide, con-

tinuous traces. Volume filling places spherical structuring elements of estimated radius, con-

centric with the centerline traces.

Projections and perspectives. The strand-resolved and depth-resolved z-projections are

created inside the SLAVV software in MATLAB by rendering strand centerline voxels with

colors based on the unique strand identity or the z-component of each centerline location,

respectively. Three-dimensional visualization is also done inside the SLAVV software with the

isosurface and isonormals MATLAB functions by upsampling the strand sample

points, and rendering each as a volume-filled object. The colors are again mapped from the

strand unique identifiers.

Statistical analysis of vectors

Statistical calculations are performed within the SLAVV software to extract features of the net-

work output such as volume, surface area, length, and number of bifurcations. These calcula-

tions operate on the network output strands idealized as consecutive circular, right cylinders

(Fig 3B). For analyzing distributions (histograms) of vessel quantities, the lateral surface area is

used as the weighting quantity, because the lateral surface area is directly proportional to the

chemical flux across the vessel wall.

Simulating 2PM images

Realistic 2PM images of varying contrast and noise are simulated from a ground truth vectori-

zation for the purposes of measuring automated vectorization performance. First the ground

truth vectorization is rendered in a binary volume-fill at high resolution, blurred with an over-

estimated Gaussian model for the microscope point spread function [28], and downsampled

to the resolution of the original raw image. The intensities are then linearly transformed to

have a positive background value IB and a larger foreground value IF.

To simulate Poisson distributed noise, a normally distributed random variable is added to

each voxel with variance equal to the voxel intensity. The foreground and background values

are varied to achieve different contrast and noise levels. Contrast is defined as the difference

between the foreground and background intensities, IF − IB, and noise as the standard devia-

tion of that difference,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
IF þ IB
p

. For comparison purposes, simulated image quality is summa-

rized by the contrast to noise ratio.

Evaluating vectorization performance

The SLAVV method is designed to extract bulk statistics of interest from large volumes of vas-

culature. Therefore, vectorization performance is evaluated by its accuracy in computing such

statistics. The surface area density is a fundamental vascular statistic because it is roughly
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proportional to the chemical transport per volume of tissue. Other oftentimes reported statis-

tics of interest are the volume fraction, length density, and bifurcation density.

Discussion

Advantages of the direct vectorization approach

The SLAVV method is advantageous because it is robust to input signal shape, quality, and res-

olution. Through efficient linear filtering, vessel centerlines and sizes are estimated along with

an “energy” or goodness of fit metric. Vessel objects are extracted using simple algorithms to

utilize the energy information along with size and topological (connectivity) constraints.

Unlike image segmentation approaches, which classify voxels as true or false from grayscale

images, the SLAVV approach directly extracts elementary vectors from the grayscale image. In

doing so, it removes the needs for pre- or post-image processing (interpolation, morphological

filtering, skeletonization), which improves computational efficiency and reduces sensitivities

to image quality, resolution, and signal shape (spherical vs annular). Although machine learn-

ing methods may perform quickly and efficiently once trained on a particular dataset, such

image segmentation methods do not directly produce vectorizations and require computation-

ally-expensive (non-linear) morphological filtering during skeletonization. In contrast,

SLAVV is developed from first principles in signal processing, so there is no need to train a

model or maintain separate training and testing datasets. Furthermore, image segmentation

methods produce binary images without any guaranteed topology, oftentimes requiring reme-

dial morphological filtering. In contrast, the SLAVV method is guaranteed to produce a con-

nected network with certain topological constraints (Automated vessel vectorization): 1. edges

connect two vertices, 2. vertex volumes do not overlap. Although the SLAVV method does not

segment the image before extracting vectors, it can nonetheless be used as a segmentation tool

(by rendering the extracted vectors at the resolution of the original). Unlike voxel-by-voxel

image segmentation methods, the output of SLAVV has guaranteed shape and connectivity

constraints that are realistic for vascular networks.

Performance of SLAVV on endothelial-labeled inputs

An endothelial labeled image, such as Image 1 is very difficult to segment using voxel-by-voxel

classification, because the signal only outlines the object instead of filling its volume. The

SLAVV approach is robust to this input signal shape, because it can be tuned to detect a com-

bination of spherical and annular shapes. However, manual vector classification is less efficient

on the endothelial-labeled Image 1 than the plasma-labeled Image 2 (Table 3), because the

automated vector extraction is less robust to noise for the endothelial signal which is weaker

and spans fewer voxels. Despite these obstacles, the SLAVV method enables the calculation of

morphological statistics from endothelial contrast (Table 2) that would otherwise be very diffi-

cult. Additionally, because the initial filtering is linear, the superposition principle guarantees

good performance on any combination of plasma- and endothelial- labeled inputs (result not

shown).

Anatomical statistic accuracy

The surface area density was observed to be uniform in depth (Fig 3C or 3D), consistent with

an assumption of homogeneous chemical transport demand. Previous anatomical statistics

describing cerebral microvasculature in mice have largely come from two-photon images of

post-mortem brain tissue. In a comprehensive review by [10], the vascular volume density was

reported to be between 0.5 and 1% and the length density between 0.7 and 1.1 m/mm3. These
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results are comparable to the bulk statistics obtained in the cursory anatomical study shown in

Fig 3 and Table 2. For example, the vectors extracted from Image 3 had a length density of 0.6

m/mm3. Interestingly, the corresponding volume density was 6%. This larger volume estimate

could be attributed to a higher vascular perfusion under anesthesia and in vivo compared to

post-mortem imaging.

Fully-automated SLAVV performance

The objective performance evaluation demonstrates a rigorous framework for testing the accu-

racy of vectorization techniques on a simulated image with known quality and ground truth.

The ability of SLAVV to extract bulk network statistics such as surface area, length, and num-

ber of bifurcations is shown to be more robust to image quality than the voxel intensity classi-

fier benchmark. The vectorizations utilized size, shape, and topographical information to

achieve a greater robustness to image quality. Therefore, it is unsurprising that there was an

image quality threshold below which the vector energy classifier outperformed the voxel inten-

sity classifier.

Future work: Neurovascular plasticity

The vectorization software will be expanded to accept time-lapse images, automatically register

vascular objects between imaging sessions, and manually curate any changes. Time-lapse

images will be analyzed to estimate vascular plasticity statistics such as angiogenesis or angio-

necrosis. Time-resolved neurovascular statistics in murine cortex will be estimated with high

accuracy and precision and in large volume. Good estimates of these statistics will inform fun-

damental neurovascular research. Measured statistics will be compared between treatment

groups in a relevant medical experiment, for example to study the effect of a drug on capillary

plasticity in adult murine cortex.

Conclusion

We present the SLAVV method to vectorize microvascular networks directly from unpro-

cessed, in vivo 2PM images of the mouse cortex. This vectorization method removes any pre-

processing requirements (image segmentation, interpolation, denoising) by utilizing linear

filtering and vector extraction algorithms. Furthermore, there is no machine learning required,

so the user does not need to generate separate training and testing datasets. The SLAVV

method is shown to perform similarly on plasma- and endothelial-labeled images, enabling

statistical calculations for the bulk network (length, area, volume, bifurcation frequency) and

for individual capillaries, arterioles, or venules. Automated and manual processing costs

remain manageable even for large volume inputs. Fully-automated SLAVV performance is

proven robust to image quality compared to a common intensity-based thresholding

approach. The SLAVV method is expected to enable longitudinal capillary tracking through

accurate and efficient vectorization of time-lapse, in vivo images of mouse cerebral

microvasculature.
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