Three-Dimensional Computation of Focused Beam Propagation through Multiple Biological Cells


The FDTD method was used to simulate focused Gaussian beam propagation through multiple inhomogeneous biological cells. To our knowledge this is the first three dimensional computational investigation of a focused beam interacting with multiple biological cells using FDTD. A parametric study was performed whereby three simulated cells were varied by organelle density, nuclear type and arrangement of internal cellular structure and the beam focus depth was varied within the cluster of cells. Of the organelle types investigated, it appears that the cell nuclei are responsible for the greatest scattering of the focused beam in the configurations studied. Additional simulations to determine the optical scattering from 27 cells were also run and compared to the three cell case. No significant degradation of two-photon lateral imaging resolution was predicted to occur within the first 40 µm of imaging depth.

Journal article
Optics Express