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Abstract: A potential method for tracking neurovascular disease progression over time in preclinical
models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature
with capillary-level resolution. However, obtaining high-quality, three-dimensional images with
traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies. Here,
we present a convolutional neural network-based (PSSR Res-U-Net architecture) algorithm for fast
upscaling of low-resolution or sparsely sampled images and combine it with a segmentation-less
vectorization process for 3D reconstruction and statistical analysis of vascular network structure. In
doing so, we also demonstrate that the use of semi-synthetic training data can replace the expensive
and arduous process of acquiring low- and high-resolution training pairs without compromising
vectorization outcomes, and thus open the possibility of utilizing such approaches for other MPM
tasks where collecting training data is challenging. We applied our approach to images with large
fields of view from a mouse model and show that our method generalizes across imaging depths,
disease states and other differences in neurovasculature. Our pretrained models and lightweight
architecture can be used to reduce MPM imaging time by up to fourfold without any changes in
underlying hardware, thereby enabling deployability across a range of settings.

Keywords: deep learning; multiphoton imaging; fast upscaling; vascular segmentation and
vectorization

1. Introduction

The neurovascular network transports chemicals (e.g., oxygen, nutrients, waste) to and
from the brain to support neuronal activity [1,2]. Neurovascular function is disrupted by
disorders such as stroke, Alzheimer’s and other neurodegenerative diseases, and diabetes,
with lasting effects that are not fully understood. Advances in multiphoton fluorescence
microscopy (MPM) have enabled imaging with capillary-level resolution in vivo, and this
noninvasive tool could be used to monitor capillary-level changes over time in cerebral
vasculature as a potential predictor of disease progression/prognosis [3–6]. A constraint
with MPM, however, is the slow acquisition process that is necessary for producing high-
quality, three-dimensional images with a traditional point-scanning multiphoton imaging
setup. Given the physical limitations of a live animal, the acquisition speed puts a limit
on study sizes and the ability to reach statistically significant results. Although previous
approaches have sought to improve imaging speeds by incorporating innovative imaging
hardware, these implementations come at high cost and complexity and cannot be readily
employed in existing infrastructure [7–10].
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An alternative, more cost-effective and accessible approach might be to computation-
ally improve the image acquisition process using convolutional neural networks (CNNs),
which leverage existing datasets of MPM images. While several recent advances have been
made in applying CNNs to improve MPM imaging results [11–16], to our knowledge, only
one has been focused on improving MPM imaging speed. Guan et al. presented a CNN
for improving the imaging speed of a two-photon fiberscope for neuronal imaging using a
conditional generative adversarial network (cGAN) [16]. They achieved a 10-fold speedup
in frame rate. A drawback to their approach, however, is the requirement for a two-part
training set, involving both ex vivo and in vivo imaging, which is extremely expensive and
time-consuming. Several other models for general denoising or segmentation for MPM
have also been focused primarily on neuronal or calcium imaging [11–14], with only one to
our knowledge focused on vascular segmentation [16], none of which is used for improving
vascular imaging speeds.

The aim of our work is to demonstrate and validate a novel CNN-based data acquisi-
tion pipeline that allows for improved neurovascular imaging speeds by up to fourfold.
We use a Res-U-Net architecture CNN-based approach trained to take images captured at
low resolution (128 × 128 pixels), thereby at much faster speeds, and then upscale these
to a higher resolution (512 × 512 pixels) without compromising the accuracy of vascular
morphological information that is extracted or introducing additional noise. The upscaling
process from low to high resolution using deep learning is referred to as image super-
resolution. We then combined this with a vectorization pipeline to obtain quantitative
statistics of neurovasculature. Our pretrained models and light architecture allow for
fast acquisition, image super-resolution, and vectorization of MPM images without the
limitations of added hardware and can be used to reduce imaging time by up to fourfold.
To our knowledge, there currently do not exist any comparably low-cost and accessible
methods for increasing neurovascular MPM imaging speeds.

This article will discuss methods used, followed by results, and a discussion of the
results of our work.

2. Methods
2.1. In Vivo Imaging
2.1.1. Animal Preparation

Cranial window implants were prepared in C57 mice with dura intact, exposing a
4 × 3 mm portion of the skull that was then fixed with a cover glass to restore intracranial
pressure as previously described [17]. During imaging, mice were anesthetized with
isoflurane and body temperature was maintained at 37.5 ◦C. Blood plasma was fluorescently
labeled with dextran-conjugated Texas red (70 kDa, D1830, Thermo Fisher, Waltham, MA,
USA) dissolved in saline (5% w/v). The dye was administered intravenously via retro-
orbital injection (0.1 mL). All animal protocols were approved by the University of Texas at
Austin Institutional Animal Care and Use Committee.

For the stroke model mice, photothrombotic ischemia was induced through retro-
orbitally injecting rose bengal (0.15 mL at 15 mg/mL) and irradiating a penetrating arteriole
branching from the middle cerebral artery for 15 min. The laser source had a 532 nm
wavelength, 20 mW average power, and was focused to a ~300 µm-diameter spot size.
Mice were anesthetized with isoflurane (1.5%, 0.6–0.8 LPM) and body temperature was
maintained with a heating pad during the procedure. Pial anatomy was visualized using
laser speckle contrast imaging to select which artery to target and to confirm occlusion.

2.1.2. Image Acquisition

All images were acquired using a custom-built two-photon microscope previously
described [18]. The excitation source was an ytterbium fiber amplifier with an output
beam of 1050 nm wavelength, 120 fs pulse width, and 80 MHz repetition rate [19]. High-
resolution images were 512 × 512 pixels and low-resolution images were 128 × 128 pixels,
both with a field size of 700 × 700 µm. Image stacks were acquired with 3 µm axial spacing.
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A resonant-galvanometer scanning system was used [18], with average pixel dwell times
of 87.8 ns and 20-frame averaging. Power at the sample did not exceed 170 mW and was
identical between low- and high-resolution pairs. Images with large fields of view were
taken as a 2-by-4 grid of standard images, with ~25–30% overlap between tiles.

2.2. Image Processing
2.2.1. Image Preprocessing

All images were normalized prior to use as a training image or semi-synthetic test
image. A 3D median filter of size [1 1 1] was applied to raw image stacks, followed by a
full-scale contrast stretch (FSCS) to fill the 16-bit range with 0.3% saturation across the entire
stack, using the normalization function provided by Fiji ImageJ (v. 2.35) [20]. This FSCS
normalization method was determined to create the best images compared to FSCS across
the entire stack without saturation and FSCS by image slice (Supplementary Figure S1).
Images were then converted from 16 bit to 8 bit and separated into individual frames.

2.2.2. Stitching

Images with large fields of view acquired as a 2-by-4 grid of standard images were
stitched together using ImageJ’s Grid/Collection Stitching plugin [21].

2.3. Semi-Synthetic Image Generation
2.3.1. Single-Frame Images

To create semi-synthetic low-resolution images for training, preprocessed real-world
images received one of the following types of noise: Poisson, Gaussian (µ = 0, σ = 0.1), addi-
tive Gaussian (µ = 0, σ = 5), or no noise prior to fourfold downscaling (from 512 × 512 pixels
to 128 × 128 pixels). For additive Gaussian noise, the local variance was scaled by 0.001. A
range of parameters (i.e., mean, standard deviation, local variance) were tested to identify
values for optimal performance. Models were trained for each combination of parameters
and given test images. Output images were inspected visually, and image quality metrics
(PSNR, SSIM) were calculated.

2.3.2. Multi-Frame Images

Low-resolution images from the single-frame semi-synthetic image generation step
were used to create multi-frame training images. Multi-frame images consisted of five
low-resolution images sequential in axial space with 0.3 µm separation (axial distance
between acquired images).

2.4. Neural Networks and Training

To perform upscaling of the low-resolution images to high-resolution images, we used
an architecture called Point Scanning Super Resolution (PSSR), first described in Fang
et al. [22]. The PSSR architecture is a ResNet-based U-Net convolutional neural network.
The U-Net is in the standard form of encoder–decoder with skip-connections, where the
encoder gradually downsizes an input image, followed by the decoder upsampling the
image back to its original size. The encoder portion uses a Resnet architecture pretrained on
ImageNet. The decoder utilizes learnable subpixel convolutional layers, which are trained
for upsampling. A typical issue that occurs with deconvolution going from a low dimension
to a higher dimension is uneven overlap, which leads to artifacts that appear in the form of
a checkerboard. Instead of dealing with this issue through the use of carefully managed
stride lengths, the model utilizes an additional blurring kernel to remove checkerboard
artifacts. This blurring is achieved through the use of an interpolation kernel with a zero-
order hold with the scaling factor after each upsampling layer (Figure 1). To train the
model, we used a mean squared error (MSE) loss function after determining that L1 and
feature loss did not perform as well (Supplementary Figure S2). A learning rate of 9 × 10−4

was used for single-frame training and 1 × 10−4 was used for multi-frame training.
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2.4.1. Training/Test Images

Preliminary training for finding the best noise model was undertaken with 3399 train-
ing (data from 5 mice, 16 stacks, 6 imaging sessions) and 676 validation image pairs (2 mice,
3 stacks, 2 imaging sessions). Final full-dataset training was completed using 24,069 training
(6 mice, 114 stacks, 19 imaging sessions) and 4494 validation (6 mice, 22 stacks, 7 imaging
sessions) image pairs. Real acquired image pairs (677 image pairs from 2 mice, 3 stacks,
2 imaging sessions) were used for testing and evaluating the models. These image pairs
were also used for comparing the performance between training with real acquired pairs vs.
semi-synthetic pairs (234 image pairs for training, 221 image pairs for validation, 222 image
pairs for testing; each set from 1 mouse, 1 stack, 1 imaging session).

2.4.2. Hardware

Training was performed using Frontera at the Texas Advanced Computing Center
(TACC) with four NVIDIA Quadro RTX 5000 GPUs using the CUDA version 10.0 toolkit.

2.5. Image Quality Evaluation

Image quality between upscaled images and the original image was preliminarily
assessed with peak signal-to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM).

PSNR measures differences between images at the pixel level. The SSIM computes
image similarity in terms of contrast, luminance, and structure [23]. Both metrics were
computed using built-in MATLAB functions:

PSNR = 10log10(R2/MSE)

where R is the peak signal value and MSE is the mean square error between the two images.

SSIM = ((2µxµy + C1)(2σxy + C2))/((µx
2 + µy

2 + C1)(σx + σy + C2))

where for images x and y, µx and µy are the means, σx and σy are the standard deviations,
σxy is the cross-variance, and C1 and C2 are constants.

Both metrics were computed using built-in MATLAB functions. In combination, these
metrics gave a general sense of image similarity, but were not indicators of morpholog-
ical accuracy from vectorization. Generally, higher PSNR and SSIM values are desired.
However, both metrics correlate similarities in raw intensity values with higher similarity
between images, whereas the vectorization process designed for vascular networks is the
end goal of image acquisition and produces quantitative anatomical information that may
or may not be of interest to a particular researcher. For simplicity, when possible, we
chose image segmentation accuracy (with respect to the ground truth) to measure general
vectorization performance. In the case of unknown ground truth, SLAVV was used to
segment the original image and estimate the CNR, which was used to match the quality of
the simulated and real acquired images. PSNR and SSIM values do not seem to fully reflect
image quality improvement from denoising, as seen in Figure 2b where image quality
improves visually with the increased training data, but PSNR and SSIM values decrease
slightly. In addition, higher variations in predicted pixel intensity value are seen within
white vessel regions, which can cause lower PSNR and SSIM values despite not affecting
visual quality or vectorization performance. This especially affects images closer to the
surface of the brain, where large arteries dominate the image, and accounts for the outlier
points seen in the boxplots of Figures 2 and 3.

2.6. Vectorization

All vectorization was performed using SLAVV software (v. 2.02) [24]. Real acquired
low-resolution images were upscaled using PSSR, then vectorized and manually curated.
To obtain an objective comparison of methods without manual curation bias, a simulated
image with known ground truth was created from the manually curated high-resolution
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image. The simulated image had an identical CNR (0.94) to the original acquired high-
resolution image, measured by SLAVV as:

CNR =

(
I f oreground − Ibackground

)
std

(
Ibackground

)
where Iforeground is average foreground intensity and Ibackground is average background
intensity.

A low-resolution image was created using the previously described semi-synthetic
image generation method. The low-resolution image was upscaled using bilinear inter-
polation, the single-frame model, and the multi-frame model. Vectorization of simulated
images using automated curation was possible with the known ground truth, as previously
described [24].

From the vectorized networks for each upscaled image, the original simulated image,
and the ground truth network, cumulative distribution functions were calculated for strand
statistics (length, average radius, average z-direction, and inverse tortuosity). Two compar-
isons were then made for each strand statistics: Pearson’s correlation between each upscaled
or original simulated image CDF and ground truth CDF; and Kolmogorov–Smirnov (K-S)
test between each upscaled image and original simulated image. The Pearson’s correlation
values compare the performance of each simulated (upscaled or original) image against
the ground truth. The original simulated image serves as a baseline for vectorization
performance. The K-S test is used to determine whether the performance of each model is
significantly different compared to the original simulated image.

Overall accuracy was calculated for comparison as follows:

accuracy = 0.1(sensitivity) + 0.9(speci f icity)

with sensitivity and specificity defined as follows:

sensitivity =
TP

(TP + FN)

speci f icity =
TN

(TN + FP)

where TP is the number of true-positive detections, TN is true negative, FP is false positive,
and FN is false negative. TP refers to when the predicted and actual values are both true,
TN refers to when the predicted and both false, FP refers to when the predicted value is
true but the actual value is false, and FN refers to when the predicted value is false but the
actual value is true [25]. Balanced accuracy is usually defined as 50% sensitivity and 50%
specificity. However, in our application, this is not a desirable measure, as we are interested
in weighting the vasculature (foreground voxels) significantly more than the background.
Foreground voxels occupy about 5–10% of the total volume, so we chose to use a weighted
accuracy regime as a measure of the performance of our model.

Blender renderings for vectorization visualization were created using VessMorphoVis
software (v 0.2.0) [26].

2.7. Statistical Analysis

All significance values were Bonferroni-adjusted from the standard p value of 0.05 to
address the increased possibility of type I error.

3. Results
3.1. Structure and Analysis Pipeline Overview

Our pipeline to improve two-photon microscopy acquisition and vectorization accepts
individual as well as multiple frames from MPM imaging. Our process is split into two
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main parts: an image super-resolution CNN designed to upscale low-resolution images and
a vectorization pipeline that is designed to output morphological statistics on the acquired
images (Figure 1). Low-resolution images (128 × 128 pixels) are acquired using two-photon
microscopy. A deep learning (PSSR Res-U-Net)-based upscaling process generates high-
resolution images (512 × 512 pixels), which would take much longer to acquire, from
low-resolution images. Segmentation-less vascular vectorization (SLAVV) generates 3D
renderings and calculates network statistics from an upscaled image stack. For super-
resolving the images, we used the PSSR Res-U-Net architecture, which has been shown
to restore images of presynaptic vesicles and neuronal mitochondria from a scanning
electron microscope (SEM) and a laser scanning confocal microscope, respectively [22].
We utilized this architecture over several other possible ones because it: (a) allowed us
to use semi-synthetic data for training, which circumvents the need to acquire real-world
image pairs for training, which is difficult and expensive for large datasets; (b) enabled
us to also employ multi-frame inputs that could leverage information across correlated
images at similar depths; (c) does not utilize an adversarial network in the training, which
is more challenging to train as well as to evaluate the generated models; and (d) allowed
us to use a transfer learning approach to initialize our model with weights obtained with
the architecture trained on ImageNet, a large natural image classification dataset [22]. For
vectorization, we used segmentation-less, automated, vascular vectorization (SLAVV) [24],
which uses simple models of vascular anatomy, and efficient linear filtering and vector
extraction algorithms with manual or automated vector classification. Using a multi-frame
PSSR approach and combining it with a vectorization pipeline, we show that we are able to
restore two-photon vascular images sufficiently for extracting morphological characteristics
through vectorization.
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Figure 1. Structure and analysis pipeline. Low-resolution images (128 × 128 pixels) are acquired
using two-photon microscopy. A deep learning (PSSR Res-U-Net)-based upscaling process generates
high-resolution images (512 × 512 pixels), which take much longer to acquire, from low-resolution
images. Segmentation-less vascular vectorization (SLAVV) generates 3D renderings and calculates
network statistics from an upscaled image stack.
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3.2. Transfer Learning, Creation and Evaluation of Semi-Synthetic Training Data

Traditional approaches to upscaling images involve acquiring paired high- and low-
resolution real-world images that we could use for training the model [16,17]. For our
task, however, this process is time-consuming, since both low- and high-resolution image
pairs must be collected (as opposed to accessing existing or acquiring only high-resolution
images that can be used to make semi-synthetic data), expensive, since the additional
acquisition time needed means additional costs for anesthesia and dye injections plus
labor hours, and in certain situations impossible for live animals, since it is possible for
animal movement during the transition from low- to high-resolution acquisition to cause
image pairs to not perfectly match. This challenge greatly limits the practical sample size
of training datasets. To overcome this difficulty, we sought to use semi-synthetic training
data that mimic low-resolution acquisition to greatly improve sample size. Semi-synthetic
training data were created by adding noise to, then downscaling, full-resolution images
from a two-photon vascular image repository of previously acquired images (see Data
Availability). We evaluated several approaches for the creation of this semi-synthetic
data and compared our results to a model trained with a real-world dataset of the same
sample size.

To mimic the noise observed in real acquired low-resolution images (i.e., real data),
we tested models trained with semi-synthetic images that were created with the following
noise filters: no noise (downscaled only, used as the reference), Poisson noise, Gaussian
noise, and additive Gaussian-distributed noise (Figure 2a). Real acquired low-resolution
images served as input images to test the model. We evaluated model performance using
standard image quality metrics, specifically, by calculating and comparing the peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM) of the model output
and acquired full-resolution image.

The resulting median PSNR and SSIM values from each model, ranked from highest
to lowest for both metrics, were as follows: Gaussian, additive Gaussian, Poisson, no
noise (Figure 2b,c). This was determined using Wilcoxon signed-rank tests with p < 0.005
(Bonferroni-adjusted). We noticed that the Gaussian and additive Gaussian models per-
formed similarly, and thus performed further testing to compare the two noise methods
using a larger training set consisting of 24,069 semi-synthetic training image pairs—7×
the preliminary training set of 3399 semi-synthetic image pairs. The test image outputs
from the models trained with the larger dataset showed notable qualitative improve-
ments, with fewer false detections, less noise, and smoother vessel shapes. With the larger
dataset, the Gaussian model produced a slightly higher median PSNR value but did not
produce a median SSIM value that was statistically significantly different from that pro-
duced by additive Gaussian (Wilcoxon signed-rank test, p < 0.005). Despite the slightly
higher PSNR performance by the Gaussian model, however, a qualitative comparison
suggested that the additive Gaussian results had somewhat less noise and higher sen-
sitivity to fainter vessels. Additionally, PSNR only measures similarity in pixel values
and does not necessarily predict vectorization performance, which is what we ultimately
wish to optimize. To fully validate and compare the performance between the Gaussian-
and additive Gaussian-trained models, we performed a final comparison test using the
Segmentation-Less Automated Vascular Vectorization (SLAVV) (v2.1.0) software (further
described in a later section). We found that the additive Gaussian model output allowed for
a more accurate vessel detection overall compared to the Gaussian model output (95.7% vs.
95.6%). Based on these results, we chose to perform subsequent analyses using the model
trained with the full dataset of semi-synthetic images created using the additive Gaussian
noise method to maximize accurate vessel detection.
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Figure 2. Generating and evaluating semi-synthetic training data. (a) Examples of semi-synthetic
training images created using different types of added noise prior to downscaling: no noise (downscal-
ing only), Poisson, Gaussian, and additive Gaussian. Acquired low-resolution (LR, 128 × 128 pixels)
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and high-resolution (HR, 512 × 512 pixels) ground truth images are shown for reference. (b) Resulting
test image output from models trained using each noise method, with acquired low-resolution image
for model input and acquired high-resolution image as ground truth for comparison. All models
were trained with 3399 image pairs, with the Gaussian and additive Gaussian models further tested
on 24,069 image pairs (7×) to further test performance. (c) Boxplot comparison of PSNR and SSIM
values for each noise method image in (b) measured against ground truth image. Values plotted for
an image stack of 222 images. (d) Comparison of test images from models trained using real-world
acquired vs. semi-synthetic data, with real acquired low-resolution image for model input and ac-
quired high-resolution image as ground truth for reference. All models were trained with 234 image
pairs, a large reduction from the noise model comparison, due to the limited availability of real-world
pairs. (e) Boxplot comparison of PSNR and SSIM values for real acquired vs. semi-synthetic model
outputs corresponding to (d), measured against high-resolution ground truth image. All values are
plotted for an image stack of 222 images.

To evaluate the effectiveness of using semi-synthetic data in place of real-world train-
ing data, we compared the performance of models trained with each method (Figure 2d,e).
For this comparison, both models were trained with 234 image pairs, due to the limited
availability of acquired image pairs. The output image from the real acquired model
appeared blurrier and over-predicted vessel diameters more significantly compared to
the semi-synthetic model (Supplemental Figure S1). Nonetheless, the model trained with
real-world data had higher median PSNR and SSIM values compared to the model trained
with semi-synthetic data (Wilcoxon signed-rank test, p < 0.05), although the values were
close (PSNR: 26.9 vs. 26.6; SSIM: 0.492 vs. 0.494). We deem the results similar enough for
semi-synthetic training data to be used in place of real-world training data. The use of
semi-synthetic data advantageously circumvents complications from imprecise alignment
in the acquisition of image pairs, limited availability of existing images (677 pairs), and
high material and labor costs for data collection.

3.3. Single-Frame vs. Multi-Frame Training

A key issue with low-resolution acquired images is the diminished amount of total
signal capture. This can result in noisier images and cause spurious vessels to appear in the
vectorization process. A potential method for reducing false detections is providing the
model neighboring depth images on a stack, which are highly correlated in signal but not
in noise. Thus, we sought to improve the performance of our model by using multi-frame
image input.

We compare the performance of the single-frame model to a multi-frame model,
with an additional comparison against the traditional bilinear upscaling method, for both
semi-synthetic and real-world test images (Figure 3). The traditional bilinear upscaling
method offers a baseline performance measure for a non-CNN approach. The multi-frame
model is trained with input image stacks consisting of five sequential images in depth,
with axial offsets of 0.3 µm, to predict a single output image—the third image in the
input sequence. The multi-frame model yields images with higher PSNR and SSIM values
than the single-frame model, and both PSSR methods outperform the bilinear upscaling
method for both semi-synthetic and real-world test images (Wilcoxon signed-rank test,
p < 0.0167, Bonferroni-adjusted). Overall PSNR and SSIM values are higher for semi-
synthetic images compared to real-world images, which is unsurprising given the model
was trained completely on semi-synthetic images. Nonetheless, the real-world output
images from our models show that individual vessels can be resolved, which is much more
important for the final vectorization process than the exact pixel values measured by PSNR.
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frame model for semi-synthetic and real acquired test images. All models were trained with 24,069 im-
age pairs. (a) Semi-synthetic test images from bilinear upscaling and models trained using single-
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vs. multi-frame data. Acquired low-resolution image for model input and acquired high-resolution
image as ground truth are shown for reference. (b) PSNR and SSIM plots corresponding to semi-
synthetic test results from (a). (c) Real-world test images from bilinear upscaling and models trained
using single- vs. multi-frame data. (d) PSNR and SSIM plots corresponding to real-world test image
results from (c).

3.4. Reconstruction and Stitching of Infarct Images

A major application of two-photon imaging that we aim to make more accessible
with our approach is imaging using a large field of view (FOV) of diseased vasculature.
Large-FOV imaging with high resolution is a time-consuming process and thus would
benefit substantially from the speedup offered by low-resolution imaging. Large-FOV
images are achieved by acquiring then stitching standard-sized tiles together using ImageJ’s
Grid/Collection Stitching plugin [21]. An example of application is acquiring images from a
stroke model, which is of interest for studying disease effects on vascular morphology. Even
with a sped-up resonant-galvo setup [18] (as opposed to a traditional, slower galvo–galvo
setup), the large-FOV 1.18 mm × 2.10 mm × 0.636 mm image stack used to generate the
high-resolution stroke model image in Figure 4 required close to an hour of imaging time
and did not come close to capturing the entire region affected by the infarct. This issue
is further amplified when trying to image an entire cohort of mice in a single day for a
longitudinal study of significant sample size. These currently inadequate acquisition speeds
limit our ability to collect substantial two-photon image sets of diseased vascular networks
and result in the limited availability of images of diseased vasculature that could be used
for training data. Thus, the ability to speed up imaging times for large-FOV images using
our model, without the need for specialized training data, would allow for the collection of
greater volumes of diseased vasculature, such as with stroke studies.

To investigate the feasibility of using our models to drastically reduce imaging times
for large-FOV images of diseased vasculature with minimal information loss, we examined
the ability of our single-frame and multi-frame models, trained only with images of normal
vasculature, to restore a semi-synthetic large FOV image of an ischemic infarct (four weeks
post-stroke) collected in a preliminary study (Figure 4). The differences in morphology
between vasculature in the peri-infarct region and normal vasculature are exemplified
by the differences between the top half of the full image, which more closely resembles
normal vasculature, and the bottom half of the image, which captures the infarct region and
the more immediately surrounding vessels. Ischemic infarct vessels appear significantly
more parallel to the imaging plane, thus creating image slices with higher vascular area
density compared to the more perpendicularly oriented vessels further from the infarct.
Despite these morphological differences and having only trained with images of normal
vasculature, our models are able to resolve capillaries in the infarct region, as shown in the
insets of Figure 4. The multi-frame output image more closely resembles the HR image
than the single-frame image, as vessel radii are more consistent in the multi-frame image.
In the case of the LR and bilinear-upscaled images, the individual capillaries in the inset
cannot be resolved.
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Figure 4. Maximum-intensity projections (x-y) of ischemic infarct images consisting of
2 × 4 tiles with 213 slices (final dimensions 1.18 mm × 2.10 mm × 0.636 mm, pixel dimensions
1.34 µm × 1.36 µm × 3 µm) for a semi-synthetic low-resolution image, bilinear upscaled image,
single- and multi-frame output images, and acquired high-resolution image. The black hole in the
bottom-left corner represents the infarct itself.

3.5. Vectorization

Vectorization is the ultimate step that extracts quantitative information for evaluating
the vascular morphology of a network. Therefore, we are interested in comparing different
image generation strategies by comparing performance after vectorization. We demonstrate
successful vectorization of single- and multi-frame model output images from real acquired
low-resolution images using manual curation-assisted SLAVV and visualization with
VessMorphoVis [26] (Figure 5a). Additionally, we perform a more objective comparison of
our models’ performance using a previously described method [24], which uses simulated
images from a known ground truth and automated vector classification (no manual assist).
Using a known ground truth (derived from the real acquired high-resolution vectorized
network shown in (Figure 5a), we are able to quantify the sensitivity, specificity, and
accuracy of the vectorized upscaled images. We generated the simulated vascular image
to have the same contrast-to-noise ratio (CNR) of 0.94 as the real acquired high-resolution
image and to be representative of the image quality of a typical image acquired by our
two-photon microscope. We created a low-resolution version of the simulated image using
the same method for creating semi-synthetic training data and then upscaled it using
bilinear interpolation and our single-frame and multi-frame models. We then vectorized
these images using fully automated (globally thresholded) SLAVV at peak segmentation
performance (measured against the ground truth image). The resulting strand objects are
the minimal set of one-dimensional traces that span the entire vascular network.



Bioengineering 2024, 11, 111 14 of 19
Bioengineering 2024, 11, x FOR PEER REVIEW 14 of 19 
 

 
Figure 5. Comparison of vectorization results using different upscaling methods against a ground 
truth image. (a) Blender rendering of vectorized images using VessMorphoVis [26] for visual com-
parison between single- and multi-frame results and an acquired high-resolution image. We 

Figure 5. Comparison of vectorization results using different upscaling methods against a ground
truth image. (a) Blender rendering of vectorized images using VessMorphoVis [26] for visual comparison



Bioengineering 2024, 11, 111 15 of 19

between single- and multi-frame results and an acquired high-resolution image. We performed man-
ual curation for this vectorization process. (b) Vectorized image statistics for the automated curation
process with known ground truth (simulated from manually curated high-resolution image). CDFs
shown for metrics of length, radius, z-direction, and inverse tortuosity for original (OG), simulated
original (sOG), bilinear upscaled (BL), and PSSR single- and multi-frame (SF, MF, respectively) images.
Pearson’s correlation values (r2) were calculated between the original image and each simulated
or upscaled image for each metric. (c) Statistics regarding maximum accuracy (%) achieved with
vectorization or thresholding and % error in median length and radius for each method.

We plotted cumulative distribution functions (CDFs) for each image for each of the
following strand metrics: length, radius, z-direction, and inverse tortuosity (Figure 5b).
We included the simulated original image in the analysis as a control for the automated
curation process, since the ground truth image was obtained through manual curation.
For each strand metric, we calculated Pearson’s correlation (r2) values between the CDFs
of the ground truth image and the simulated images. Of all the images, the simulated
original image maintained the highest r2 value for average strand radius and inverse
tortuosity. Our multi-frame model had the highest r2 value for strand length, while
bilinear and the single-frame model produced the highest r2 value for the z-direction.
We performed a Kolmogorov–Smirnov (K-S) test to compare the CDFs of each upscaling
method against that of the simulated original image. The multi-frame CDFs for strand
length, radius, and z-direction, the single-frame CDFs for length and z-direction, and the
bilinear CDF for z-direction were not significantly different from those of the simulated
original image (p < 0.0167, Bonferroni-adjusted). Thus, of the tested upscaling methods,
the multi-frame model produced the most statistically comparable strand metrics to the
simulated original image.

We calculated overall accuracy with respect to the ground truth for each image
(Figure 5c). The original simulated image retains the highest vectorization accuracy (96.2%),
followed by multi-frame (95.7%), single-frame (95.2%), and bilinear (94.5%). In terms of ac-
curacy with raw image segmentation through intensity thresholding, however, multi-frame
performs best (96.0%), followed by single-frame (95.3%), bilinear (94.4%), and original
simulated image (91.9%). We also calculated the percentage error in the median length and
median radius, the characteristics that best represent the vessel morphology, between each
image against the ground truth values. Multi-frame produced the lowest median length
error (6.4%), followed by bilinear (7.2%), single-frame (8.1%), and the original simulated
image (8.2%). The bilinear and single-frame images had notably higher median radius
errors (40.1% and 41.6%, respectively) compared to the multi-frame and original simu-
lated images (both 26.9%), which was noted with visual inspection of the images as well.
These statistics further support that a multi-frame upscaled image produces comparable
vectorization results to an original high-resolution image.

4. Discussion

To our knowledge, this is the first time that a deep learning model has been demon-
strated to improve imaging speeds for two-photon microscopy by upscaling and denoising
low-resolution images of vasculature while retaining accuracy in extracted morphological
characteristics. For this application, our model outperforms the traditional, non-CNN
bilinear upscaling technique in output image quality (Figures 3 and 4) and vectorization
accuracy (Figure 5). The performance of our model also improves notably with increased
training data (Figure 2b); therefore, substantial time and material costs are reduced by
training the model with semi-synthetic images generated from our database of 28,563 pre-
viously acquired two-photon vascular images. Real-world data also introduce further
complications by requiring image registration. Not only would this add computational
hours, but the image registration process does not produce perfect alignment either, because
it is limited to being purely translational and free of interpolation to maintain the original
recorded pixel values. Any rotational misalignments would not be accurately correctable.
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We speculate that these misalignments in real-world training image pairs caused the overly
blurry and enlarged vascular structures seen in the results of preliminary experiments
(Figure 2d, Supplementary Figure S3).

Models trained from semi-synthetic images proved capable of restoring low-resolution
vascular images and outperformed the standard bilinear interpolation method. For per-
forming segmentation via intensity thresholding (Figure 5c), multi-frame had the highest
accuracy of the upscaling methods and significantly outperformed the original standard-
resolution image. We hypothesize that this is a result of the denoising that occurs in the
PSSR process. Since all upscaled images had higher intensity thresholding accuracy com-
pared to the original image, we further postulate that upscaled images have less noise
overall because fewer pixels are physically captured: all pixels created during upscaling
are interpolated from neighboring pixel values and thus free of noise from the image
acquisition process [18]. For performing vectorization, however, the diminished noise does
not offset accuracy losses from the upscaling process. We determined that the multi-frame
model yields the highest accuracy of the three upscaling methods, but did not outperform
the original standard-resolution image. Nonetheless, the multi-frame image also produced
the greatest number of CDFs for strand metrics that were not significantly different from
those of a standard-resolution image. We consider these results from the multi-frame
model to be within acceptable tolerance for vectorization accuracy and similarity in strand
statistics for our previously described purposes of characterizing the structural properties
of the vessels of a particular network [27,28].

By acquiring low-resolution images, the imaging time could be reduced by up to half
in a two-photon microscope with a resonant-galvo scanning system and by up to fourfold
with a galvo–galvo scanning system because the number of pixels collected along each x–y
axis is reduced to half. In a resonant-galvo scanning system, the one-half time saving is only
applicable along the galvo axis because the galvo axis is the slow limiting factor in the scan
time, while the resonant axis is very fast [18], and thus the total time saving is only up to one
half. In a galvo–galvo system, the one-half time saving applies along both slow galvo axes,
resulting in total time savings of up to four times. The reduction in imaging time can have
several benefits. For instance, faster imaging times reduce risk of phototoxicity and thermal
damage if excitation powers are kept constant [29,30]. Additionally, the amount of time for
which the subject is under anesthesia is reduced, decreasing the risk of vascular dilation [31],
which can create skewed vectorization statistics. The reduction in imaging time can also
decrease the injection volume and frequency of fluorescent dye, which alone can save up
to hundreds of dollars in addition to eliminating the risk of sample misalignment caused
by a reinjection during an imaging session. A specific but major benefit for those wishing
to conduct chronic studies is that the faster acquisition times will allow for larger cohorts,
which are currently constrained by the number of animals that can reasonably be imaged
within each timepoint. This would yield more statistically significant sample sizes for
studying and comparing healthy and diseased vasculatures over time.

With the potential for future disease studies in mind, we tested our model on data from
a mouse that was given a stroke. We show that our model, despite having only been trained
with images of healthy vasculature, can reasonably restore images taken from a peri-infarct
region with sufficient resolution for the image stitching algorithm to successfully create
a large FOV image. These results from semi-synthetic test data are promising in terms
of being able to apply the model broadly to different disease models, although further
validation should be performed with real-world test data.

Another area of research that could benefit from increased imaging speeds is the study
of light propagation through the brain for the development of noninvasive brain imaging
devices. With accessibility to a larger database of large-FOV two-photon images, light
propagation models can be more thoroughly developed, tested, and refined [32]. As precise
capillary capture is not necessary for these models, the use of even lower resolution and
faster imaging could be further explored with PSSR. With decreased acquisition times
comes an inevitable decrease in the amount of signal collected. Thus, a limitation to
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this method is that 100% accuracy cannot be expected. This method is best suited for
applications with some tolerance for error in the precise mapping of vasculature, such
as studies where bulk morphological statistics are tracked over time. Although losses in
accuracy in low-resolution images are inevitable due to less information being captured,
experimentation with the accuracy and speedup tradeoff can be done to fit the tolerance of
any application.

The potential for further speedup by reducing frame averaging could also be explored.
Lower frame averaging leads to higher noise levels, which PSSR can be used to reduce
noise. With higher noise, we would expect increased false-positive and/or false-negative
detections, leading to an overall reduction in restoration accuracy. A potential method
that can be explored to combat this effect would be to modify the loss function to increase
the penalty for false-negative detections with the tradeoff of accepting more noise in the
image. Alternatively, to prioritize denoising over high sensitivity, the loss function could
be modified to penalize false-positive detections more heavily.

Finally, we believe that another area of follow-up would be to extend this approach to
examine tissues beyond just neurovasculature, for example, to study renal artery disease,
vascular diseases of the heart, or neovascularization of tumors.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering11020111/s1, Figure S1: Test image results for models
trained & tested with different normalization methods. Sagittal projections of model output image
stacks that underwent full scale contrast stretch (FSCS) with respect to the entire stack, per slice, or
entire stack with 0.3% saturation prior to input to each respectively trained model as test images.
FSCS was done with Fiji ImageJ normalization function [20]; Figure S2: Test image results for models
trained with different loss functions (single image slice); Figure S3: Vessel diameter comparison for
test image outputs from models trained with real training data vs. semi-synthetic training data, vs. a
real-acquired image. Approximate vessel diameters are as follows in units of pixels: real training: 13,
semi-synthetic training: 10, real acquired 7.
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